a2 United States Patent

Moritz

US009235393B2

US 9,235,393 B2
Jan. 12, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(63)

(1)

(52)

(58)

STATICALLY SPECULATIVE COMPILATION

AND EXECUTION

Applicant: III Holdings 2, LL.C, Wilmington, DE
(US)

Inventor: Csaba Andras Moritz, Amherst, MA
(US)

Assignee: III HOLDINGS 2, LL.C, Wilmington,
DE (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/192,438

Filed: Feb. 27, 2014
Prior Publication Data
US 2014/0331030 A1 Nov. 6, 2014

Related U.S. Application Data

Continuation of application No. 13/669,687, filed on
Nov. 6, 2012, now abandoned, which is a continuation
of application No. 13/033,159, filed on Feb. 23, 2011,
now abandoned, which is a continuation of application
No. 12/347,252, filed on Dec. 31, 2008, now
abandoned, which is a continuation of application No.
10/191,646, filed on Jul. 9, 2002, now Pat. No.
7,493,607.

Int. Cl1.

GO6F 9/45 (2006.01)

GO6F 1/32 (2006.01)

U.S. CL

CPC ... GO6F 8/4432 (2013.01); GO6F 1/32

(2013.01); Y02B 60/181 (2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
3,603,934 A 9/1971 Heath, Jr.
4,003,033 A 1/1977 O’Keefe
4,037,090 A 7/1977 Raymond, Jr.
4,042,972 A 8/1977 Gruner
4,050,058 A 9/1977 Garlic
4,067,059 A 1/1978 Derchak
4,079,455 A 3/1978 Ozga
4,101,960 A 7/1978 Stokes
4,110,822 A 8/1978 Porter
(Continued)
FOREIGN PATENT DOCUMENTS
EP 0314277 A2 5/1989
EP 0552816 A2 7/1993
(Continued)
OTHER PUBLICATIONS

Abraham et al., “Automatic and Efficient Evaluation of Memory
Hierarchies for Embedded Systems”; 32nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO’99); p. 114;
1999.

(Continued)

Primary Examiner — Qamrun Nahar
(74) Attorney, Agent, or Firm — Schwabe, Williamson &
Wyatt

(57) ABSTRACT

A system, for use with a compiler architecture framework,
includes performing a statically speculative compilation pro-
cess to extract and use speculative static information, encod-
ing the speculative static information in an instruction set
architecture of a processor, and executing a compiled com-
puter program using the speculative static information,
wherein executing supports static speculation driven mecha-
nisms and controls.

22 Claims, 11 Drawing Sheets

DYNAMIC

N

!
Virtual Line! Hotline Index

. . o
6oy |, i Hotling Miss | __
Cache TLB Cac&eTLE_EN

]

STATIC

/10
Cache TLB_Miss —

122 l Hit/Mit

Address

14

' 15
[Cache Miss

1
T
]
HEEN
| SW Handler] ———— :
|
|
i
|

/20

Data

US 9,235,393 B2
Page 2

(56)

4,125,871
4,128,873
4,138,720
4,181,942
4,255,785
4,354,228
4,376,977
4,382,279
4,403,303
4,410,939
4,434,461
4,435,758
4,450,519
4,463,421
4,538,239
4,541,045
4,562,537
4,577,282
4,592,013
4,604,695
4,607,332
4,626,988
4,649,471
4,665,495
4,679,140
4,709,329
4,713,749
4,714,994
4,720,812
4,772,888
4,773,038
4,777,591
4,787,032
4,803,621
4,860,198
4,870,562
4,873,626
4,931,986
4,992,933
5,021,993
5,036,460
5,038,282
5,045,995
5,070,451
5,111,389
5,121,498
5,127,091
5,136,697
5,193,202
5,224,214
5,230,079
5,276,895
5,361,367
5,410,669
5,430,854
5,440,749
5,479,624
5,481,684
5,481,693
5,497,478
5,524,223
5,542,059
5,542,074
5,551,039
5,555,386
5,555,428
5,560,028
5,579,520
5,590,283
5,590,356
5,598,546
5,604,913
5,608,886
5,630,143
5,637,932

References Cited
U.S. PATENT DOCUMENTS

11/1978
12/1978
2/1979
1/1980
3/1981
10/1982
3/1983
5/1983
9/1983
10/1983
2/1984
3/1984
5/1984
7/1984
8/1985
9/1985
12/1985
3/1986
5/1986
8/1986
8/1986
12/1986
3/1987
5/1987
7/1987
11/1987
12/1987
12/1987
1/1988
9/1988
9/1988
10/1988
11/1988
2/1989
8/1989
9/1989
10/1989
6/1990
2/1991
6/1991
7/1991
8/1991
9/1991
12/1991
5/1992
6/1992
6/1992
8/1992
3/1993
6/1993
7/1993
1/1994
11/1994
4/1995
7/1995
8/1995
12/1995
1/1996
1/1996
3/1996
6/1996
7/1996
7/1996
8/1996
9/1996
9/1996
9/1996
11/1996
12/1996
12/1996
1/1997
2/1997
3/1997
5/1997
6/1997

Martin
Lamiaux
Chu
Forster
Chamberlin
Moore
Bruinshorst
Ugon
Howes
Kawakami
Puhl

Lorie
Guttag
Laws
Magar
Kromer, III
Barnett
Caudel
Prame
Widen
Goldberg
George
Briggs
Thaden
Gotou
Hecker
Magar
Oklobdzija
Kao
Kimura
Hillis
Chang
Culley
Kelly
Takenaka
Kimoto
Gifford
Daniel
Taylor
Matoba
Takahira
Gilbert
Levinthal
Moore
McAuliffe
Gilbert
Boufarah
Johnson
Jackson
Rosich
Grondalski
Grondalski
Fijany
Biggs
Sprague
Moore
Lee
Richter
Blomgren
Murata
Lazaravich
Blomgren
Kim
Weinberg
Nomura
Radigan
Sachs
Bennett
Hillis
Gilbert
Blomgren
Koyanagi
Blomgren
Maher
Koreeda

B e 3 B D e 0 0> 0 B 0 0 0 D B B 0 0 B B 0 0 D D 0 0 0 B 0 B 0 0 D B B 0 3 D B D 0 0 D 0 e 0 B D B 0 D B B 0 B D B D 0 0 D 0 0 > D

5,638,525
5,638,533
5,652,894
5,655,122
5,655,124
5,659,722
5,659,778
5,664,950
5,666,519
5,684,973
5,696,958
5,704,053
5,721,893
5,727,229
5,737,572
5,737,749
5,742,804
5,752,068
5,758,112
5,758,176
5,774,685
5,774,686
5,778,241
5,781,750
5,790,877
5,794,062
5,805,907
5,805,915
5,812,811
5,822,606
5,848,290
5,854,934
5,857,104
5,864,697
5,864,707
5,870,581
5,872,987
5,875,324
5,875,464
5,884,057
5,887,166
5,903,750
5,924,117
5,930,490
5,930,509
5,933,650
5,933,860
5,946,222
5,949,995
5,960,467
5,966,544
5,991,857
5,996,061
6,006,328
6,021,484
6,044,469
6,049,330
6,052,703
6,058,469
6,067,609
6,067,622
6,076,158
6,078,745
6,089,460
6,105,139
6,108,775
6,119,205
6,121,905
6,130,631
6,175,892
6,178,498
6,211,864
6,212,542
6,216,223
6,219,796
6,256,743
6,272,512
6,272,676
6,282,623

P e P e e 0 3> e B 0 0 > B D 0 0 0 B D B 0 0 D 0 0 0 D B D 0 0 0 D 0 0 0 B D B 0 0 0 B B 0 e D B D 0 B 0 0 0 B 0 0 D B 0 B

6/1997
6/1997
7/1997
8/1997
8/1997
8/1997
8/1997
9/1997
9/1997
11/1997
12/1997
12/1997
2/1998
3/1998
4/1998
4/1998
4/1998
5/1998
5/1998
5/1998
6/1998
6/1998
7/1998
7/1998
8/1998
8/1998
9/1998
9/1998
9/1998
10/1998
12/1998
12/1998
1/1999
1/1999
1/1999
2/1999
2/1999
2/1999
2/1999
3/1999
3/1999
5/1999
7/1999
7/1999
7/1999
8/1999
8/1999
8/1999
9/1999
9/1999
10/1999
11/1999
11/1999
12/1999
2/2000
3/2000
4/2000
4/2000
5/2000
5/2000
5/2000
6/2000
6/2000
7/2000
8/2000
8/2000
9/2000
9/2000
10/2000
1/2001
1/2001
4/2001
4/2001
4/2001
4/2001
7/2001
8/2001
8/2001
8/2001

Hammond
Law

Hu

Wu

Lin
Blaner
Gingold
Lawrence
Hayden
Sullivan
Mowry
Santhanam
Holler
Kan
Nunziata
Patel
Yeh
Gilbert
Yeager
Agarwal
Dubey
Hammond
Bindloss
Blomgren
Nishiyama
Baxter
Loper
Wilkerson
Dubey
Morton
Yoshida

Hsu
Natarjan
Shiell

Tran
Redford
Wade

Tran

Kirk
Blomgren
Mallick

Yeh

Luick
Bartkowiak
Yates

van Hook
Emer
Redford
Freeman
Mabhalingaiag
Sager
Koetje
Lopez-Aguado
Drake

Park
Horstmann
Redford
Redford
Baxter
Meeker
Moore

Sites

De Greef
Hazama
Dey

Shiell

Wicki
Redford
Redford
Sazzad
Sharangpani
Redford
Kahle
Revilla
Bartley

Lin

Golliver
Haghighat
Halahmi

712/205

US 9,235,393 B2
Page 3

(56)

6,282,628
6,282,639
6,286,135
6,289,505
6,292,879
6,301,705
6,327,661
6,334,175
6,341,371
6,381,668
6,385,720
6,393,520
6,404,439
6,412,105
6,430,674
6,430,693
6,446,181
6,452,864
6,473,339
6,477,646
6,487,640
6,487,651
6,502,188
6,529,943
6,539,543
6,550,004
6,560,776
6,571,331
6,574,740
6,601,161
6,611,910
6,625,740
6,643,739
6,658,578
6,671,798
6,675,305
6,687,838
6,732,253
6,772,323
6,795,781
6,813,693
6,826,652
6,931,518
6,934,865
6,970,985
6,988,183
7,024,393
7,036,118
7,080,366
7,089,594
7,162,617
7,185,215
7,278,136
7,293,164
7,299,500
7,430,670
7,467,377
7,487,340
7,493,607
7,564,345
7,600,265
7,613,921
7,639,805
7,676,661
7,996,671
2001/0032309
2001/0037450
2001/0044891
2001/0056531
2002/0073301
2002/0095566
2002/0104077
2002/0116578
2003/0014742
2003/0041230

U.S. PATENT DOCUMENTS

Bl
Bl
Bl
Bl
Bl
Bl
Bl

References Cited

8/2001
8/2001
9/2001
9/2001
9/2001
10/2001
12/2001
12/2001
1/2002
4/2002
5/2002
5/2002
6/2002
6/2002
8/2002
8/2002
9/2002
9/2002
10/2002
11/2002
11/2002
11/2002
12/2002
3/2003
3/2003
4/2003
5/2003
5/2003
6/2003
7/2003
8/2003
9/2003
11/2003
12/2003
12/2003
1/2004
2/2004
5/2004
8/2004
9/2004
11/2004
11/2004
8/2005
8/2005
11/2005
1/2006
4/2006
4/2006
7/2006
8/2006
1/2007
2/2007
10/2007
11/2007
11/2007
9/2008
12/2008
2/2009
2/2009
7/2009
10/2009
11/2009
12/2009
3/2010
8/2011
10/2001
11/2001
11/2001
12/2001
6/2002
7/2002
8/2002
8/2002
1/2003
2/2003

Dubey
Puziol
Santhanam
Goebel
Fong
Doshi
Kocher
Chih
Tandri
Lunteren
Tanaka
Yoshikawa
Coulombe
Maslennikov
Trivedi
Lin
Ramagopal
Condemi
De Ambroggi
Krishna
Lipasti
Jackson
Zuraski, Jr.
Ohi
Guffens
Henry
Breggin
Henry
Odaohhara
Rappoport
Sharangpani
Datar

Van De Waerdt
Laurenti
Puziol
Mohammad
Orenstien
Redford
Krishnan
Aldridge
Chilimbi
Chauvel
Redford
Moritz
Moritz
‘Wong
Peinado
Ulery
Kramskoy
Lal

Ota

Cook
Moritz
DeWitt, Jr.
Klebe
Horning
Wu

Luick
Moritz
Devadas
Davydov
Scaralata
Li

Mohan
Chheda
Henry
Metlitski
McGrath
McFarling
Kahle
Sharangpani
Charnell
Sakai

Seth
Rappoport

2003/0066061 Al 4/2003 Wu
2004/0010675 Al 1/2004 Moritz
2004/0010679 Al 1/2004 Moritz
2004/0010782 Al 1/2004 Moritz
2004/0010783 Al 1/2004 Moritz
2004/0015923 Al 1/2004 Hemsing
2004/0139340 Al 7/2004 Johnson
2004/0154011 Al 82004 Wang
2004/0158691 Al 8/2004 Redford
2004/0162964 Al 82004 Ota
2004/0205740 Al 10/2004 Lavery
2005/0055678 Al 3/2005 Sakai
2005/0066153 Al 3/2005 Sharangpani
2005/0108507 Al 5/2005 Chheda
2005/0114850 Al 5/2005 Chheda
2005/0154867 Al 7/2005 DeWitt, Jr.
2005/0172277 Al 82005 Chheda
2005/0210249 Al 9/2005 Lee
2005/0262332 Al 11/2005 Rappoport
2006/0179329 Al 8/2006 Terechko
2007/0294181 Al 12/2007 Chheda
2008/0126766 Al 5/2008 Moritz
2009/0300590 Al 12/2009 Moritz
2011/0258416 Al 10/2011 Moritz
2012/0102336 Al 4/2012 Chheda
2013/0145132 Al 6/2013 Moritz

FOREIGN PATENT DOCUMENTS

EP 0679991 A1 11/1995
EP 0681236 A1 11/1995
EP 0945783 A2 9/1999
GB 2201015 8/1988
JP 10-289305 10/1998
JP 2002-7359 1/2002
WO 87/00318 Al 1/1987
WO 91/19269 Al 12/1991
WO 93/04438 Al 3/1993
WO 99/14685 Al 3/1999
WO 02/39271 Al 5/2002
WO 02/39272 Al 5/2002
WO 02/44895 Al 6/2002
WO 02/46885 A3 6/2002
WO 2004/006060 A2 1/2004
WO 2004/006060 A3 1/2004
OTHER PUBLICATIONS

Abstract Search, “SIMD Processor”; dated Mar. 21, 2003.

Actel Corporation, “Design Security in Nonvolatile Flash and
Antifuse FPGAs Security Backgrounder” [online] Retrieved from
the Internet: <URL://www.actel.com/documents/DesignSecurity
WP.pdf> [retrieved on Feb. 22, 2011] 2002.

Advanced Micro Devices, Inc., “Quantispeed™ Architecture”; AMD
White Paper, Sunnyvale, CA (2001).

Aho et al., Compilers: Principles, Techniques and Tools, Addison-
Wesley; Reading, MA; 1988.

Akkar et al., “An Implementation of DES and AES, Secure Against
Some Attacks”; CHES2001, LNCS 2162; pp. 309-318 (2001).
Al-Tawil, K. et al., “Performance Modeling and Evaluation of MPI”;
Journal of Parallel and Distributed Computing, vol. 61; pp. 202-223;
2001.

Anderson et al., “Physical Design of a Fourth-Generation Power GHz
Microprocessor”; Digest of Technical Papers, IEEE International
Solid-State Circuits Conference, pp. 232-233 and 451 (2001).
Anderson, L., “Program Analysis and Specialization for the C Pro-
gramming Language”; PhD Thesis, DIKU, University of
Copenhagen; May 1994.

ANSI x9.17, “American National Standard for Financial Institution
Key Management (wholesale)”; Tech. Rep., American Bankers
Assoc.; 1985.

Antoniou, A., “Digital Filters: Analysis, Design & Applications”;
McGraw-Hill, New York, NY; 1993.

Aragon et al., “Power-aware Control Speculation Through Selective
Throttling”; Proceedings of 9th International Symposium on High
Performance Computer Architecture (HPCA) 2003.

US 9,235,393 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

ARM Architecture Reference Manual—ARM DDI 0100E; pp.
A4-A28 and A4-A82; © 1996-2000.

Ashok et al, “Cool-Mem: Combining Statically Speculative
Memory Accessing wit Selective Address Translation for energy
Efficiency”; in Proceedings of the 10th International Conference on
Architectural Support for Programming Language and Operating
Systems (ASPLOS 2002); San Jose, CA; pp. 133-143, Oct. 2002.
Ashok et al, “Coupling Compiler-Enabled and Conventional
Memory Accessing for Energy Efficiency”; ACM Transactions on
Computer Systems; 22(2):180-213 (2004).

Ashok et al., “Network Software: From NCP to Ubiquitous Comput-
ing”; Encyclopedia of Life Support Systems; 2001.

Athanas et al., “Processor Reconfiguration Through Instruction-Set
Metamorphosis”; IEEE/Computer Magazine, vol. 26(3); pp. 11-18-;
1993.

Babb et al., “Parallelizing Applications into Silicon”; The 7th Annual
IEEE Symposium on Field-Programmable Custom Computing
Machines; FCCM’99; Napa, CA; Apr. 1999.

Bahar et al., “Power and Energy Reduction Via Pipeline Balancing”,
IEEF, 12 pages (2001).

Banerjee et al., “Fast execution of loops with IF statements”; IEEE
vol. 84; pp. 126-132; 1984.

Baniasadi et al., “Instruction Flow-Based Front-end Throttling for
Power-Aware High Performance Processors”, ISLEPD *01), ACM,
pp. 16-21 (2001).

Bechade et al., “A 32b 66 MHz 1.8W Microprocessor”, Digest of
Technical Papers, IEEE, pp. 208-209 (1994).

Bellas et al., “Architectural and Compiler Techniques for Energy
Reduction in High-Performance Microprocessors”; IEEE Trans. On
Very Large Scale Integration Systems, vol. 8(3); pp. 317-326; 2000.
Bellas, Nikolaos E., et al., Using Dynamic Cache Management Tech-
nique to Reduce Energy in General Purpose Processors; pp. 693-708;
2000.

Ben Naser, M., et al., “Data Memory Subsystem Resilient to Process
Variations”; PhD Thesis; Jan. 2008.

Ben Naser et al., “A Step-by-Step Design and Analysis of Low Power
Caches for Embedded Processors”; Boston Area Architecture Work-
shop (BARC-2005); Jan. 2005.

Ben Naser, M., “Designing Memory Subsystems Resilient to Process
Variations”; IEEE Computer Society Annual Symposium on VLSI
(ISVLSI 2007); Brazil, May 2007.

Ben Naser, M., “Power and Failure Analysis of Cam Cells Due to
Process Variations”; Proc. Of 13th IEEE International conference on
Electronics, Circuits and Systems (ICES’06), Nice, France; Dec.
2006.

Benini, et al., “A recursive Algorithm for Low-Power Memory Par-
titioning”, (ISLPED *00), ACM, pp. 78-93 (2000).

Biham et al., “Differential Cryptanalysis of DES-like
Cryptosystems”; J. Cryptology, vol. 4; pp. 3-72; 1991.

Brooks et al., “Wattch: A Framework for Architectural-Level Power
Analysis and Optimizations”; Proceedings of the 27th International
Symposium on Computer Architecture (ISCA *00): ACM; pp. 83-94
(2000).

Burger et al., “The SimpleScalar Tool Set, Version 2.0”; Computer
SciencesDept., Univ. of Wisconsin-Madison, Technical Report 1342,
pp. 13-25 (1997).

Bursky, D., “Advance DRAM Architectures Overcome Data Band-
width Limits”; Electron, Des., vol. 45; pp. 73-88 (1997).

Burtscher at al., “Static Load Classification for Improving the Value
Predictability of Data-Cache Misses”; ACM, pp. 222-233; 2002.
Buyuktosunoglu et al., “An Adaptive Issue Queue for Reduced Power
at High Performance” Power-Aware Computer Systems, First Inter-
national Workshop, PACS 2000, pp. 25-39 (2000).

Calder et al., “Fast & Accurate Instruction Fetch and Branch Predic-
tion”, I[EEE, pp. 2-11 (1994).

Calder et al., “Next Cache Line and Set Prediction”; Proceedings of
the 1995 International Computer Symposium on Computer Archi-
tecture, ACM, pp. 287-296 (1995).

Cantin et al., “Cache Performance for Selected SPEC CPU2000
Benchmarks”, Computer Architecture News, 29(4): 13-18 (2001).
Chang et al., “Protecting Software code by Guards”; Proc. ACM
Workshop on Security and Privacy in Digital Rights Management
(SPDRM); LNCS 2320; pp. 160-175; 2002.

Chase et al., “Lightweight Shares Objects in a 64-Bit Operating
System”; Univ. of Washington, Dept. of Computer Science & Engi-
neering, Technical Report 92-03-09; Seattle, WA; Jun. 1992.
Chheda et al., “Combining Compiler and Runtime IPC Predictions to
Reduce Energy in Next Generation Architectures”; Proceedings of
the First conference on computing Frontiers; Italy, pp. 240-254; Apr.
2004.

Chheda et al., “Memory Systems: Overview and Trends”; Encyclo-
pedia of Life Support Systems; 2001.

Chiou et al., “Application-Specific Memory Management for
Embedded Systems Using Software-Controlled Caches”; (DSC’00),
ACM, pp. 416-419 (2000).

Cohn et al., “Optimizing Alpha Executables on Windows NT with
Spike”; Digital Technical Journal, vol. 9(4); pp. 3-20; 1997.
Collins, L., “Power Drops Focus the Minds at Arm”; EE Times
(2002) [online] Retrieved from the Internet: <URL: http://eetimes.
ew/uk/16505609> [retrieved on Aug. 28, 2008].

Compaq Computer Corporation, “Compiler Writer’s Guide for the
Alpha 21264”; Digital Equipment Corporation© 1999.

Cooper et al., “Compiler-Controlled Memory”; ASPLOS VIII; ACM,
33(11):2-11 (1998).

Cortadella et al., “Evaluation of A +B =K Conditions Without Carry
Propagation”; IEEE Trans. On Computers, vol. 41(11); pp. 1484-
1488; Nov. 1992.

Cosoroba, A., “Double Data Rate synchronous DRAMS in High
Performance Applications”; WESCON’97 IEEE Conference Pro-
ceedings; pp. 387-391 (1997).

Cowell et al., “Improved Modeling and Data-Migration for Dynamic
Non-Uniform Cache Access”; in MDDS 2003 organized in conjunc-
tion with ISCA 2003.

Daemen et al., “The Rijndael Block Cipher—AES Proposal”;
[online] Tech. Rep. [retrieved on Apr. 1, 2008] Retrieved from the
internet: <URL:http://csrec.nist.gov/encryption/aes/round2/r2algs.
htm> Mar. 9, 1999.

Deitrich et al., “Speculative Hedge Regulating Compile-time Specu-
lation Against Profile Variation”; IEEE, pp. 70-79; 1996.

Desmet et al., “Improved Static Branch Prediction for Weak Dynamic
Predictions”; Retrieved from the internet: <URL:http://escher.elis.
ugent.be/publ/Edocs/DOCS/P103__085.pdf> pp. 1-3; Sep. 2003.
Folegnani et al., “Energy-Effective Issue Logic”; IEEE; 10 pages
(2001).

Frank et al., “SUDS: Primitive Mechanisms for Memory Depen-
dence Speculation”; Technical Report LCS-TM-591; Oct. 1998.
Furber et al., “ARM3-32b RISC Processor with 4 Kbyte On-Chip
Cache”; VLSI *89; Elsevier; pp. 35-44 (1989).

Furber et al., “Power Saving Features in AMULET2¢”; in Power
Driven Microarchitecture Workshop at 25th Annual International
Symposium on Computer Architecture; Barcelona, Spain; 4 pages
(Jun. 1998).

Gandolfi et al., “Electromagnetic Analysis: Concert Results”; Work-
shop of Cryptographic Hardware and Embedded Systems
(CHES’01); LNCS 2162; pp. 251-261; 2001.

Gassend et al., “Controlled Physical Random Functions”; Proc. 18th
Ann. Computer Security Applications Conf. [online] Retrieved from
the Internet: <URL:http://csg.csail.mit.edu/pubs/memos/Memo-
457/memo-457.pdf> [retrieved on Feb. 22, 2011]; 2002.

Gilmont et al., “An Architecture of Security Management Unit for
Safe Hosting of Multiple Agents”; Proc. Of the Int’l Workshop on
Intelligent Communications and Multimedia Terminals [online]
Retrieved from the Internet: <URL:http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.140.6346&rep=repl &type=pdf>
[retrieved on Feb. 22, 2011]; Nov. 1998.

Gilmont et al., “Hardware Security for Software Privacy Support™;
Electronics Lett., vol. 35(24); pp. 2096-2097; 1999.

Gowan et al., “Power Considerations in the Design of the Alpha
21264 Microprocessor” (DAC 98); ACM, pp. 726-731 (1998).
Grand, J., “Attacks on and Countermeasures for USB Hardware
Token Devices”; Proc. 5th Nordic Workshop on Secure IT Systems

US 9,235,393 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

[online] Retrieved from the Internet: <URL:http://citeseerx.ist.psu.
edu/viewdoc/
download;jsessionid=98145A989F0A335F16702C1EA12F0819?
doi=10.1.1.16.540&rep=repl&type=pdf> [retrieved on Feb. 22,
2011]; 2000.

Grant et al., “Annotation-Directed Run-Time Specialization in C”;
ACM,; pp. 163-178 (undated).

Guo et al., “Compiler-Assisted Hardware-Based Data Prefetching
for Next Generation Processors”; PhD Thesis; May 2007.

Guo et al., “Compiler-enabled Cache Management for Pointer-Inten-
sive Programs”; Boston Area Architecture Workshop (BARC-2003);
Jan. 2003.

Guo et al., “Energy Characterization of Hardware-Based Data
Prefetching”; Proc. Of the IEEE Intl. conference on Computer
Design (ICCD’04); pp. 518-523; Oct. 2004.

Guo et al., “Energy-Aware Data Prefetching for General-Purpose
Programs”; Proc. Of PACS’04 Workshop on Power-Aware Computer
Systems; Micro-37, to be appeared on Lecture notes in computer
Science; Dec. 2004.

Guo et al., “PARE: A Power-Aware Data Prefetching Engine”; Proc.
Of International Symposium on Low Power Electronics and Design
(ISLPED’05); San Diego, CA; Aug. 2005.

Guo et al., “Runtime Biased Pointer Analysis and ITS Application on
Energy Efficiency”; Proc. Of Workshop on Power-Aware Computer
Systems (PACS’03) Micro-36; San Diego, CA; also in Lecture Note
in Computer Science, vol. 3164; pp. 1-12; Springer 2004; ISBN
3-540-24031-4; Dec. 2003.

Guo et al., “Synchronization Coherence: A Transparent Hardware
Mechanism for Cache Coherence and Fine-Grained Synchroniza-
tion”; accepted by Journal of Parallel and Distributed Computing
(JPDC) 2007.

Gutmann, P., “Data Remanence in Semiconductor Devices”; Proc. Of
the 10th USENIX Security Symposium; 17 pages; 2001.

Gutmann, P., “Secure Deletion of Data from Magnetic and Solid-
State Memory”; Proc. Of the 6th USENIX Security Symposium; 18
pages; 1996.

Heinrich, J., MIPS R 10000 Microprocessor’s User Manual, 2nd Ed.,
MIPS Technologies, Inc. (1996).

Heinrich, J., MIPS R4000 Microprocessor User’s Manual, 2nd Ed.,
MIPS Technologies, Inc. (1994).

Hennessey etal., “Enhancing Vector Performance”; Computer Archi-
tecture, a Qualitative Approach, Second Edition, Section 5; pp. C23-
C29; 1996.

Henry et al., “Circuits for Wide-Window SuperScalar Processors”
(ISCA °00), ACM, pp. 236-247 (2000).

Hinton et al., “The Microarchitecture of the Pentium 4 Processor”;
Intel Technology Journal Q1; pp. 1-12 (2001).

Huang et al., “L.1 Data Cache Decomposition for Energy Efficiency”
(ISLPED °01), ACM, pp. 10-15 (2001).

Huang et al., “Speculative Disambiguation: A Compilation Tech-
nique for Dynamic Memory Disambiguation”; IEEE, pp. 200-210;
1994.

IBM “Single-Bit Processor Enable Scheme”; IBM Technical Disclo-
sure Bulletin, vol. 29, No. 11; pp. 5016-5017; Apr. 1987.

Inoue et al., “Way-Predicting Set-Associate Cache for High Perfor-
mance and Low Energy Consumption”; (ISLPED ’99), ACM, pp.
273-275 (1999).

Intel 80386 Programmer’s Reference Manual; 1986.

Intel, “Intel® StrongARM* SA-1110 Microprocessor”; SA-1110
Brief Datasheet; pp. 1-9; (2000).

International Preliminary Report on Patentability in application PCT/
US2003/021076; mailed Sep. 16, 2004. (no. of pages?).
International Search Report for PCT/US2003/020999 mailed Oct.
10, 2003; 3 pages.

International Search Report for PCT/US2003/021120 dated Jul. 30,
2004; 3 pages.

Itoh et al., “DPA Countermeasure Based on ‘Masking Method’”;
ICICS 2001; LNCS 2288; pp. 440-456 (2002).

Jain et al., “A 1.2Ghz Alpha Microprocessor with 44.8GB/s Chip Pin
Bandwidth”; IEEE; pp. 240-241 (2001).

Kaxiras et al., “Cache Decay: Exploiting Generational Behavior to
Reduce Cache Leakage Power”; IEEE, pp. 240-0251 (2001).

Kean, T., “Secure Configuration of Field-Programmable Gate
Arrays”; Proc. Of the 11th Int’1 Conf. on Field-Programmable Logic
and Applications [online] Retrieved from the Internet: <URL:http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.2017
&rep=rep1&type=pdf> [retrieved on Feb. 22, 2011]; 2001.

Kelsey et al., “Side channel Cryptanalysis of Product Ciphers”; Proc.
ESORICS’98; pp. 97-110; 1998.

Keveretal., “A 200MHz RISC Microprocessor with 128kB On-Chip
Caches”; IEEFE; pp. 410,411 and 495 (1997).

Kim et al., “Partitioned Instruction Cache Architecture for Energy
Efficiency”; ACM Trans on Embedded Computing Systems, vol.
2(2); pp. 163-185; May 2003.

Kim et al., “Predictive Pre-charging for Bitline Leakage Energy
Reduction”; 15th Annual IEEE Int’l ASIC/SOC Conference; pp.
36-40; 2002.

Kin et al., “The Filter Cache: An Energy Efficient Memory Struc-
ture”; IEEFE, pp. 184-193 (1997).

Kocher et al., “Differential Power Analysis”; CRYPTO’99, LNCS
1666; 10 pages; 1999.

Kocher et al., “Timing Attacks on Implementations of Diffie-
Hellmann, RSA, DSS and Other Systems”; Adv. In Cryptology
(CRYPTO0’96); 10 pages; 1996.

Kommerling et al., “Design Principles for Tamper-Resistant
Smartcard Processors”; USENIX Workshop on Smartcard Technol-
ogy; 12 pages; 1999.

Kowalezyk et al., “First-Generation MACIC Dual Processor”; IEEE,
pp. 236-237 and 451 (2001).

Kuhn et al., “Soft Tempest: Hidden Data Transmission Using Elec-
tromagnetic Emanations”; Proc. Of 2nd Int’1 Workshop on Informa-
tion Hiding [online] Retrieved from the Internet: <URL:http://www.
cl.cam.au.ukt/~mgk25/ih98-tempest.pdf> [retrieved on Feb. 22,
2011]; 1998.

Kuhn et al., “Tamper Resistance—A Cautionary Note”; Proc. Of the
2nd USENIX Workshop on Electronics Commerce; 11 pages; 1996.
Kuhn, M., “Optical Time-Domain Eavesdropping Risk of CRT Dis-
plays”; Proc. Of the 2002 IEEE Symposium on Security and Privacy
[online] Retrieved from the Internet: <URL:http://www.cl.cam.ac.
uk/~mgk?25/ieee02-optical pdf> [retrieved on Feb. 22, 2011]; May
2002.

Lam et al., “Limits of Control Flow on Parallelism”; ACM, pp.46-57
(1992).

Larson et al., “Exploiting Superword Level Parallelism with Multi-
media Instruction Sets”; (PLDI *00), ACM, pp. 145-156 (2000).
Lee et al,, “Region-Based Caching: An Energy-Delay Efficient
Memory Architecture for Embedded Processors”; (CASES ’00)
ACM, pp. 120-127 (2000).

Leenstra et al., “A 1.8 GHz Instruction Buffer”; IEEFE, pp. 314-315
and 459 (2001).

Levinthal et al., “Chap—A SIMD Graphics Processor”; Computer
Graphics, vol. 18(3); Jul. 1984.

Lie et al., “Architecture Support for Copy and Tamper Resistant
Software”; Proc. Of the 6th Int’l Conf. Architecture Support for
Programming Language and Operating Systems; ACM; 10 pages;
2000.

Loughry et al., “Information Leakage from Optical Emanations”;
ACM Trans. On Information and System Security, vol. 5(3); 28
pages; 2002.

MAC OS Runtime Architecture for System 7 Through MAC OS 9,
Ch. 7 [online] Retrieved from the Internet: <URL:http://developer.
apple.com/documentation/mac/pdf/MacOS__RT__ Architectures.
pdf> [retrieved on Aug. 13, 2009] Published Jan. 31, 1997; © Apple
Inc.

Manne et al., “Pipeline Gating: Speculation Control for Energy
Reduction”; IEEE, pp. 132-141 (1998).

Marculescu, D., “Profile-Driven Code Execution for Low Power
Dissipation” (ISPLED *00); ACM, pp. 253-255 (2000).

US 9,235,393 B2
Page 6

(56) References Cited
OTHER PUBLICATIONS

Maro et al., “Dynamically Reconfiguring Processor Resources to
Reduce Power Consumption in High-Performance Processors,
Workshop on Power-Aware computer Systems” (PACs *00/LNCS
2008) ACM, pp. 97-111 (2001).

Memik et al, “A Selective Hardware/Compiler Approach for
Improving Cache Locality” Center for Parallel and Distributed Com-
puting, Northwestern University; pp. 1-21 (2000).

Menezes et al., “Handbook of Applied Cryptography”; CRC Press
(CRC Press Series on Discrete Mathematics and Its Applications)
1997.

Messerges et al., “Examining Smart Card Security Under the Threat
of Power Analysis Attacks”; IEEE Trans. On Computer, vol. 51(5);
pp. 541-552;2002.

Michaud et al., “Data-Flow Prescheduling for Large Instructions
Windows in Out-of-Order Processors, 7th International”; IEEE, pp.
2736 (2001).

MICRO-34, Proc. Of the 34th Annual Int’l Symposium on
Microarchitecture; IEEE Computer Society #PR01369; Austin, TX;
2001.

Milutinovic et al., “The Split Temporal/Spatial Cache: Initial Perfor-
mance Analysis”; Proceedings of the SCIzzL-5, 8 pages (1996).
Mirsky et al., “MATRIX: A Reconfigurable Computing Architecture
with Configurable Instruction distribution and Deployable
Resources”; Proc. Of the IEEE Symposium of FPGSs for Custom
Computing Machines; pp. 157-166 (1996).

Montanaro et al., “A 160 MHz, 32b, 0.5-W CMOS RISC Micropro-
cessor”; [EEE, 31(11): 1703-1714 (1996).

Moritz et al., “Adaptive Distributed Software Virtual Memory for
Raw”; Laboratory for Computer Science, Raw Group, MIT; Cam-
bridge; Jan. 1999.

Moritz et al., “Exploring Cost-Performance Optimal Designs of Raw
Microprocessors”; The 6th Annual IEEE Symposium on field-Pro-
grammable Custom Computing Machines FCCM’98; Napa, CA;
Apr. 1998.

Moritz et al., “Fault-Tolerant Nanoscale Processors on Semiconduc-
tor Nanowire Grids”; IEEE Transactions on Circuits and Systems I,
special issue on Nanoelectronic Circuits and Nanoarchitectures, vol.
54, iss. 11; pp. 2422-2437, Nov. 2007.

Moritz et al., “Hot Pages: Design and Implementation of Software
Caching for Raw”; IBM Research Lab Austin; May 1999.

Moritz et al., “Hot Pages: Software Caching for Raw Microproces-
sors”; International Symposium for Computer Architecture (ISCA-
27);, Massachusetts Institute of Technology, Cambridge, MA; pp.
1-12; 1999.

Moritz et al., “Latching on the Wire and Pipelining in Nanoscale
Designs”; 3rd Workshop on Non-silicon Computation (NSC-3),
ISCA’04; Germany; Jun. 2004.

Moritz et al., “LoGPC: Modeling Network Contention in Message-
Passing Programs”; ACM Joint International Conference on Mea-
surement and Modeling of Computer Systems, ACM Sigmetrics/
Performance 98 Wisconsin Madison; Jun. 1998; also in ACM
Performance Evaluation Review Special Issue vol. 26. No. 1.
Moritz et al., “LoGPC: Modeling Network Contention in Message-
Passing Programs”; IEEE Transaction son Parallel and Distributed
Systems, vol. 12, No. 4; pp. 404-415; Apr. 2001.

Moritz et al., “Security Tradeoffs in NEST”; DARPA Presentation;
Dec. 2003.

Moritz et al., “SimpleFit: a Framework for Analyzing Design
Tradeoffs in Raw Architectures”; IEEE Transactions on Parallel and
Distributed Systems, vol. 12, No. 7; pp. 730-743; Jul. 2001.

Moritz et al., “Towards Defect-tolerant Nanoscale Architectures”;
Incited Paper, IEEE Nano; 2006.

Mueller et al., “Predicting Instruction Cache Behavior”; ACM
SIGPLAN Workshop on Language, Compiler Tool Support for Real-
Time Systems; Jun. 2004.

Narayanan et al.,, “CMOS Control Enabled Single-Type FET
NASIC”; IEEE Computer Society Annual Symposium on VLSI
(2008).

Narayanan et al., “Comparison of Analog and Digital Nano-Systems:
Issues for the Nano-Architect”; IEEE International Nanoelectronics
Conference (INEC) 2008.

Narayanan et al., “Image Processing Architecture for Semiconductor
Nanowire based Fabrics”; accepted by IEEE 8th International Con-
ference on Nanotechnology; 2008.

National Bureau of Standards, “Data Encryption Standard”; Tech.
Rep. NBS FIPS Pub. 46, Nat’l Bur. Standards, US Dept. of Com-
merce; Jan. 1977.

Nicolau et al., “Measuring the Parallelism Available for Very Long
Instruction Word Architecture”; IEEE Transactions on Computers,
33(11); 968-976; 1984.

Oppenheim, A., “Discrete-Time Signal Processing”; Prentice-Hall,
Upper Saddle River, NJ; 1999.

Ors et al., “Power-Analysis Attack on an ASIC AES Implementa-
tion”; Proc. Of Int’1 Symp. On Information Tech. [online] Retrieved
from the Internet: <URL:http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.88.2697 &rep=repl &type=pdf> [retrieved on
Feb. 22, 2011]; ITCC 2004.

Palacharla et al., “Complexity-Effective Superscalar Processors”;
(ISCA "97) ACM, pp. 206-218 (1997).

Pandaet al., “Efficient Utilization of Scratch-Pad Memory in Embed-
ded Processor Applications”; IEEE; pp. 7-11 (1997).

Parikh et al., “Power Issues Related on Branch Prediction”;
(HPCA’02) IEEE; 12 pages (2002).

Pering et al., “Dynamic Voltage Scaling and the Design of a Low-
Power Microprocessor System”; In Power Driven Microarchitecture
Workshop; attached to ISCA98; UC Berkeley, electronics Research
Laboratory (Jun. 1998).

Polegnani et al., “Energy-Effective Issue Logic”; IEEE; 10 pages
(2001).

Ponomarev et al., “Reducing Power Requirements of Instruction
Scheduling through Dynamic Allocation of Multiple Datapath
Resources”; IEEE; pp. 90-101 (2001).

Powell et al., “Reducing Set-Associative Cache Energy via Way-
Prediction and Selective Direct-Mapping”; IEEE; pp. 54-65 (2001).
PowerPC Upgrade FAQ, Powerbook 500 Series PPC Upgrade from
IMAX [online] Retrieved from the Internet: <URL:http://www.dar-
ryl.com/ppcfaq.html> [retrieved on Aug. 13, 2009]; dated Jan. 28,
1997.

Prasad et al., “Efficient Search Techniques in the Billion Transistor
Era”; Invited paper, appears in PDPTA, Las Vegas, NV; 2001.

Qi et al., “A Unified Cache Coherence and Synchronization Proto-
col”; Boston Area Architecture Workshop (BARC-2004); Jan. 2004.
Quisquater et al., “Electromagnetic Analysis (EMA) Measure and
Counter-Measures for Smart Cards”; E-smart 2001, LNCS 2140, pp.
200-201; 2001.

Ramirez et al., “Branch Prediction Using Profile Data”; Springer-
Verlag Berlin Heidelberg; pp. 386-394 (2001).

Ranganathan et al., “Reconfigurable Caches and their Application to
Media Processing”; (ISCA *00) ACM; pp. 214-224 (2000).

Rao et al., “EMPowering Side-Channel Attacks”; IBM Research Ctr.
[online] Retrieved from the Internet: <URL:http://eprint.iacr.org/
2001/037 pdf> [retrieved on Feb. 22, 2011]; May 2001.

Reinman et al., “An Integrated Cache Timing and Power Model”;
COMPAQ Western Research Lab; pp. 1-20 (1999).

Rugina et al., “Pointer Analysis for Multithreaded Programs”; Proc.
Of SIGPLAN’99 Conf. on Program Language Design and Imple-
mentation (May 1999).

Sanchez, Jesus F., et al., Static Locality Analysis for Cache Manage-
ment; pp. 261-271; 1997.

Schlansker et al., “Achieving high Levels of Instruction-Level Paral-
lelism with Reduced Hardware Complexity”; Hewlitt Packard Labo-
ratories (HP-96-120); pp. 1-85 (1994).

Schneier et al., “Applied Cryptography, 2nd Ed.”; John Wiley & Sons,
Inc., (pub.); pp. 13 and 270-278; 1996.

Schwartz et al., “Disassembly of Executable Code Revisited”; Proc.
9th Working Conf. on Reverse Engineering (WCRE’02); 10 pages;
2002.

Simunie et al., “Source Code Optimization and Profiling and Energy
Consumption in Embedded System”; Proc. 13th Int’l Symposium on
System Synthesis; pp. 193-198 (2000).

US 9,235,393 B2
Page 7

(56) References Cited
OTHER PUBLICATIONS

Singh et al., “Short Range Wireless Connectivity for Next Generation
Architectures” in PDPTA, Las Vegas, NV; 2001.

Skorobogatov et al., “Optical Fault Induction Attacks”; Proc. Of
Cryptographic Hardware and Embedded Systems (CHES’02),
LNCS 2523; pp. 2-12; 2003.

Skorobogatov, S., “Breaking Copy Protection in Microcontrollers”;
[online] Retrieved from the Internet: <URL:http://www.cl.cam.ac.
uk/~sps32/mcu__lock.html>; retrieved on Feb. 22, 2011; 2000.
Skorobogatov, S., “Data Remanence in Flash Memory Devices”;
Proc. Of Cryptog. Hardware and Embedded Systems (CHES2005)
[online] Retrieved from the Internet: <URL:http://s3.amazonaws.
com/ppt-download/data-remanence-in-flash-memory-devices1949.
pdf?response-content-disposition=attachment
&Signature=p51Xjx2Qcu760LiE02jwBVQHYCo%3D
&Expires=1298390877

&AWS AccessKeyld=AKIAJLIT267DEGKZDHEQ> [retrieved on
Feb. 22,2011] 2005.

Skorobogatov, S., “Tamper Resistance and Physical Attacks”; Sum-
mer School on Crytpographic Hardware, Side-Channel and Faulty
Attacks (ECRYPT-2006), Jun. 12-15, 2006, Louvain-la-Neuve
[online] Retrieved from the Internet: <URL:http://www.cl.cam.ac.
uk/~sps32/#Publications> [retrieved on Feb. 22, 2011]; 2006.

Sohi et al., “Instruction Issue Logic for High-Performance, Interrupt-
able Pipelined Processors”; AMC; pp. 27-34 (1987).

Srivastav et al., “Atom: A System for Building Customizer Program
Analysis Tools”; Proc. Of ACM SIGPLAN ’94 Conf. on Program-
ming Language Design and Implementation; pp. 196-205; 1994.
Steensgard, B., “Points-to Analysis in Almost Linear Time”;
POPL’96 (1996).

Steinke et al., “Reducing Energy Consumption by Dynamic Copying
of Instructions onto Onchip Memory”; Proc. Of the 15th Int’l Sym-
posium on System Synthesis; pp. 213-218; 2002.

Telikepalli, A., “Is Your FPGA Design Secure?”; XCELL Journal
[online] Retrieved from the Internet: <URL:http://cdservl.wbut.ac.
in/81-312-0257-7/Xininx/files/Xcell%20Journal%20Articles/
xcell_47/xc__secured7.pdf> [retrieved on Feb. 22, 2011]; 2003.
The Standard Performance Evaluation Corporation, http://www.
spec.org (200 2002).

Trichina et al., “Secure AES Hardware Module for Resource Con-
strained Devices”; ESAS 2004, Lec. Notes in CompSci 3313 [online]
Retrieved from the Internet: <URL:http://citeseerx/ist.psu.edu/
viewdoc/download?doi=10.1.1.95.6712&rep=rep 1 &type=pdf>
[retrieved Feb. 22, 2011] 2005.

Tune et al., “Dynamic Predictions of Critical Path Instructions”;
IEEE; pp. 185-195 (2001).

Tygarat al., “Dyad: A System for Using Physically Secure Coproces-
sors”; Tech. Rep. CMU-CS-91-140R; Carnegie Mellon University;
38 pages; 1991.

Unnikrishnan et al., “Dynamic Compilation for Energy Adaption”;
IEEE/ACM Int’l Conf. on Computer-Aided Design; 2002.

Unsal et al., “An Analysis of Scalar Memory Accesses in Embedded
and Multimedia Systems”; High Performance Memory Systems;
Springer-Verlag; 2003.

Unsal et al., “Cool-Cache for Hot Multimedia” in Proc. Of the 34th
Annual International Symposium on Microarchitecture (MICRO-
34); Austin, TX; pp. 274-283; Dec. 2001.

Unsal et al., “Cool Cache: A Compiler-Enabled Energy Efficient Data
caching Framework for Embedded/Multimedia Processors”; ACM
Transactions on Embedded Computer Systems; 2(3): 373-392
(2003).

Unsal et al., “Cool-Fetch: A Compiler-Enabled IPC Estimation-
Based Framework for Energy Reduction”; Interact; Feb. 8, 2004.
Unsal et al., “Cool-Fetch: Compiler-Enabled Power-Aware Fetch
Throttling”; IEEE Computer Architecture Letters, vol. 1, 2002.
Unsal et al., “High-Level Power-Reduction Heuristics for Embedded
Real-Time Systems”; University of Massachusetts; p. 1-6 (2000).
Unsal et al., “On Memory Behavior of Scalars in Embedded Multi-
media Systems”; University of Massachusets; pp. 1-12 (2001).

Unsal et al., “Power-Aware Replication of Data structures in Distrib-
uted Embedded Real-Time Systems”; IPDPS 2000 Workshops; pp.
839-846.

Unsal et al., “The Minimax Cache: An Energy Efficient Framework
for Media Processors”; IEEE; pp. 131-140 (2002).

van Eck, W., “Electronic Radiation from Video Display Units: An
Eavesdropping Risk?”; Computer & Security [online] Retrieved
from the Internet: <URL:http://jya.com/emr.pdf> [retrieved on Feb.
22,2011] 1985.

Vinciguerra et al., “An Experimentation Framework for Evaluating
Disassembly and Decompilation Tools for C++ and Java”; IEEE
Proc. Of the 10th Working Conf. On Reverse Engineering
(WCRE’03); 10 pages; 2003.

Voronin, A. “Data Storage on Hard Disks” [online] Retrieved from
the Internet: <URL: http://www.digit-life.com/articles/bootman/in-
dex html> [retrieved Aug. 27, 2008].

Wall, David W., “Limits of Instruction-Level Parallelism”; ACM; pp.
176-188 (1991).

Wang et al.,, “Combining 2-Level Logic Families on Grid-based
Nanoscale Fabrics”; IEEE/ACM Symposium on Nanoscale Archi-
tectures (NanoARch’07); Oct. 2007.

Wang et al., “Combining Circuit Level and System Level Techniques
for Defect-Tolerant Nanoscale Architectures”; 2nd IEEE Interna-
tional workshop on Defect and Fault Tolerant Nanoscale Architec-
tures (NanoArch 2006); Boston, MA; Jun. 2006.

Wang et al., “Compiler-Based Adaptive Fetch Throttling for Energy
Efficiency”; Proc. Of the 2006 IEEE International Symposium on
Performance analysis of Systems and Software (ISPASS’06); Austin,
TX; Mar. 2006.

Wang et al., “NASICs: A Nanoscale Fabric for Nanoscale Micropro-
cessors”; IEEE International Nanoelectronics Conference (INEC),
2008.

Wang et al., “Opportunities and Challenges in Application-Tuned
Circuits and Architectures Based on Nanodevices”; Proc. Of the First
Conference on Computing Frontiers; pp. 503-511; Italy; Apr. 2004.
Wang et al., “Self-Healing Wire-Streaming Processors on 2-D Semi-
conductor Nanowire Fabrics”; NSTI (Nano Science and Technology
Institute) Nanotech 2006; Boston, Mal May 2006.

Wang et al., “Wire-Streaming Processors on 2-D Nanowire Fabrics”
NSTI (Nano Science and Technology Institute); Nanotech 2005;
California; May 2005.

Wang, T. “Exploring Nanoscale Application-Specific Ics and Archi-
tectures”; Boston Area Architecture Workshop (BARC-2004); Jan.
2004.

Weber “Hammer: The Architecture AMD’s of Next-Generation Pro-
cessors”; Microprocessor Forum (2001).

Weingart et al., “Physical Security Devices for Computer Sub-
systems: A Survey of Attacks and Defenses”; Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES2000), LNCS
1965; pp. 302-317; 2000.

White, R., “How Computers Work”; Millennium Edition, Que Cor-
poration; p. 36; 1999.

Wikipedia entry for “context switch” [online] Retrieved from the
internet: <URL :http://en.wikipedia.org/w/index.php?title=context
switch&oldid=244184> Retrieved on Aug. 13, 2009 [Pub. Oct. 26,
2001].

Wilson et al., “Efficient Context-Sensitive Pointer Analysis for C
Programs”; Proc. ACM SIGPLAN’95 conf. On Programming Lan-
guage Design and Implementations; Jun. 1995.

Wilton et al., “CACTI: An Enhanced Cache Access and Cycle Time
Model”; IEEE—Journal of Solid-State Circuits, 31(5):677-688
(1996).

Witchel, E., “Direct Addressed Caches for Reduced Power Con-
sumption”; IEEE pp. 124-133 (2001).

Wollinger et al., “How Secure are FPGAs in Cryptographic Applica-
tions”; Proc. Of the 13th Int’l Conf. On Field-Programmable Logic
and Applications (FPL-2003); 11 pages; 2003.

Wollinger et al., “Security on FPGAs: State of the Art Implementa-
tions and Attacks”; ACM Transactions on Embedded Computing
Systems (TECS) TECS Homepage archive, vol. 3, Iss. 3 [online]
Retrieved from the Internet: <URL:http://www.wollinger.org/pa-

US 9,235,393 B2
Page 8

(56) References Cited
OTHER PUBLICATIONS

pers/Wollingeretal ACMTransEmbed-
dedsysFPGACryptoOverview.pdf> [retrieved on Feb. 22, 2011; Aug.
2004.

Yang et al., “An Integrated Circuit/Architecture Approach to Reduc-
ing Leakage in Deep-Submicorn High-Performance I-Caches”;
IEEE; pp. 147-157 (2001).

Young et al., “Improving the Accuracy of Static Branch Prediction
Using Branch Correlation”; ACM; pp. 232-241; 1994.

Zhang et al., “Compiler Support for Reducing Leakage Energy Con-
sumption” Proc. Of the Design, Automation and Test in Europe
Conference and Exhibition [Date’03]; Mar. 2003.

Zhang et al., “Highly-Associative Caches for Low-Power Proces-
sors”; Kool Chips Workshop, 33rd International Symposium on
Microarchitecture; 6 pages (2000).

Zyuban et al., “Inherently Lower-Power High-Super-Performance
Superscalar Architectures”; IEEE Transactions on Computer; 50(3):
268-285 (2001).

* cited by examiner

U.S. Patent Jan. 12, 2016 Sheet 1 of 11 US 9,235,393 B2

DYNAMIC . STATIC
Virtual Line : Hotline Index
_ 1
! ! 3
: Hotline
| Registers
1
4 .~
: ,ﬁ (—u Houine Hit
6 i Hit/Miss
N 3
— I Hotline Miss
16 —entry | - —17 8
Cache TLB Cac&e TLB_EN
1
(10 ‘ ! -
Cache TLB_Miss Hit/Mi A U EN
12/ 1 188]
: 13 Address
*l SW Handlerl - f
' Cache Hit :
\]
14 ' 1 5} : ™~ ’j}
Cachc Miss I \r(167 PAD_EN
| SRAM_EN .
J\ 17
) SRAM .——e—{Scratch Pad
P
1
i 19~/
/ 20 v/ 21
Data
Data

Fig. 1

U.S. Patent Jan. 12, 2016 Sheet 2 of 11 US 9,235,393 B2

))
Q)
L1-R I LI-V LI-V I
EN
(STLB)
L2-R I L2-R I | L2-v
RN
MTLB
R-R V-R V-V

Fig. 2

US 9,235,393 B2

Sheet 3 of 11

Jan. 12, 2016

U.S. Patent

€ "bra
SSTA T . » TH 71
SSTIA [T /o:
s~ 0% i~ (i~ O AN
e 2 . —Je 12 . —Je wn . —e W2 .
® || feuyimeq & e Bl feuyierg & o8| Aeuyimeg & B || feuvieeg
Xapu] —»|
A
3el
SpooqSeL T
N SSIN €11
) S
EUETHETR 601 oo
3 011 \._.Ar YH 1L [
X L01
901 o811 [oSegreorsyd (IS Ve—|
q1L
o810 a8eJmA|Iaqunu a8e 1A [7xa U3
posigo oBegun | oqunu ofegma ol |
1— > . p UonE[noe) asv
¢ . 150 »{SSIPPY 2ANYH J
1 o [ewefu] w [e
€01 S JASIEY 001

US 9,235,393 B2

Sheet 4 of 11

Jan. 12, 2016

y "b1a
SSIN U]« . C » 1H 71
.................................. SSTIN 111 61T
gizN 0N T~ e ot~ R sir~ LM
2 L@ > . A . &, 2 = . 22 > .
#1282 | davimg | [F32 Bl | svima | (B3E Bl | ima | [B5E | favie
Xapu
PUL—>, Ty x x 7Yy 7y A L
aisy : _ _ _ !
gel,
oy mv_owmo-mﬁ $sa0y ssaf-Je ,_L./
uond3oid SN% QST ayoe)-Se, \»|»>/ eIz
A
w_‘% 1 LIH ayoe)-ge], I I
. x|vo§a= 1080 Xapu] |Aem
N SSIA SuloH LIH supoy
ISV | Aep [Xopuise], At (SSTN/STH SUIIoH
ayoe)-ge], 414
oz %\N — _ \ : Gl
[esgo [wpum [e | “ N\. uondsjord
l 19870 a8 aiA _ Toquinu 938 NIA _ %0 udis _ »xopuge] [Kem | AISY b
S R . 2 L S SR swysi3o aumoy _____|._
TOLR[NI[E))
0T $SAIPPY 2ATHH
[@SV] N X ™ asv
902 1250 Z T €0
[P [T | A5 | a4 : N [xpuy | sosgo | o1 | 10 | (s |
.\
107 orweuk(314 oISI30y [\ oneg oom\

U.S. Patent

U.S. Patent Jan. 12, 2016 Sheet 5 of 11 US 9,235,393 B2

301
Transform to SUIF /

format
y 302
305\ High- level SUIF Analyze and extract |
optimizations | static information
306
Low-level Generate code based on L 303
optimizations < » speculative static information
extracted

A 4

Assemble to binary| —— 304

Fig. 5

U.S. Patent

Jan. 12, 2016 Sheet 6 of 11 US 9,235,393 B2
a (b)
char *¥p, x, vy, z (@)
!’ =8 pP—X A
if (:-) { P — X
pP=0; x
p = &yj; P
Yelse £ - fl— pP—Y
*p = ‘A% p—Xx P—>ALx, Y, 2}
p = &z; p—=x
¥ p—>z
*p = ‘B’; .. p—{Y, 2}
p— {y, z3 v

Fig.

U.S. Patent

Jan. 12, 2016 Sheet 7 of 11 US 9,235,393 B2
if () { gj ! \
p = &b;
b= b EXE
b =0,
} else { [
o] :&c; ﬂ ﬂ i- ﬂ n “ ﬂ
*p = Re;
ve - af [E1—{e) (e HiHe]
f=g;
b
@
(b —[d]
[P]
(e —~{e H g

Fig. 7

U.S. Patent Jan. 12, 2016 Sheet 8 of 11 US 9,235,393 B2

p = &a;
p P> a
- Iteration 2 Iteration 3...n
while(...) Iteration 1 - a -
' a
{ p—>a q—*bﬁ_qu qqc—;@__péb qqc
C
p=q; b b b b
+b asb || pX aX || pX, ok,
p +=4;
b b b b
P-»b q9»b
X aX. ||°rX, X,
q =c&; § b i .
b ade vy o arc Y oX. abc
> c
p = &a;
p>a
q = &b;
p...>a q>b -
- Iteration 2 Iteration 3...n
while(...) Iteration 1
{ P>a @>b==P=p->b qgbc === p>c qPp c
P=q;
pP¥»b q»b PP»c gPc PP c 9P ¢
p +=4;
pP—»b qgq»b PP c q-P»c PP c q99 ¢
q =c&; A i
p»>b a%>c y P¥»c aP»Pc Vy PFc aPc
>

Fig. 8

US 9,235,393 B2

Sheet 9 of 11

Jan. 12, 2016

U.S. Patent

g8 wodpe oids wyse

6 "bra
OUSQBIPIN Pue H00Z/1dD
Sadw Sodl we dwwe osred oyenbs idA pow

H

91047 Jod paIndaxy SUOKONKSU] M

(aATEAIASU0)) SISO AJowapy £ (onsiumd()) Suissaday AJowsjy I

o]

[
()
—

(24) AoBINOdOVY UuonIPaid

US 9,235,393 B2

Sheet 10 of 11

Jan. 12, 2016

U.S. Patent

Jow

0T "bra
YOUSQBIDIT PUB ()00C/1dD
17,8 wodpe oids eser Sadw Sodl ve dwwe Jgosyed oyenbs ida
NN
NN NN NN NS

s3uiAeg A31eug ayor) M s3uiAeg AS1eug g1

s3urAeg A31ou yoo[) M

01

Sl

0T

Y4

(°4) s8uiaeg AS1ouq [€10],

U.S. Patent Jan. 12, 2016 Sheet 11 of 11 US 9,235,393 B2

ADPCM Adaptive differential pulse-coded
modulation for audio coding

RASTA Speech recognition front-end
processing

EPIC Wavelet decomposition-based
Image compression code

G721 Voice compression coder based on
the G.711, G.721 and G.723
standards

JPEG Lossy 1mage compression decoder

MPEGZ Lossy motion video compression
decoder

AMMP Computational chemistry

ART Neural network for object
recognition in a thermal image

EQUAKE Simulation of seismic wave
propagation

PARSER Word processing, synthetic English
parser

VPR FPGA circuit placement and routing

Fig. 11

US 9,235,393 B2

1
STATICALLY SPECULATIVE COMPILATION
AND EXECUTION

RELATED APPLICATION

This application is a continuation (and claims the benefit of
priority under 35 USC 120) of U.S. application Ser. No.
13/669,687, filed on Nov. 6, 2012, which is a continuation of
U.S. application Ser. No. 13/033,159, filed Feb. 23, 2011,
which is a continuation of U.S. application Ser. No. 12/347,
252, filed Dec. 31, 2008, which is a continuation of U.S.
application Ser. No. 10/191,646, filed Jul. 9, 2002 (now U.S.
Pat. No. 7,493,607). The disclosures of U.S. application Ser.
No. 13/669,687, U.S. application Ser. No. 13/033,159, U.S.
application Ser. No. 12/347,252 and of U.S. application Ser.
No. 10/191,646 are considered part of (and are incorporated
by reference in) the disclosure of this application.

FIELD OF THE INVENTION

This invention relates to power and energy consumption in
computer systems.

BACKGROUND OF THE INVENTION

Power/energy consumption has increased significantly
with every chip generation. With the reduced transistor sizes
in modern processors, the per area power density is approach-
ing that of a nuclear reactor. Consequently, power reduction
has become a design goal, with power saving features widely
recognized as representing the next phase in the advancement
of microprocessors. Portability and reliability requirements
of emerging applications further underline this trend.

Major processor vendors realize that they must compete in
terms of the power consumption of their chips as well as chip
speed. Typical approaches to reduce power consumption
(e.g., by reducing supply voltage and/or clock rate) negatively
impact performance. Other approaches do not scale between
design generations (e.g., as clock rates increase, due to
changed critical paths, the value of many circuit or microar-
chitecture based energy reduction approaches is reduced).

The challenge is to reduce the energy consumed in proces-
sors without sacrificing performance, and with solutions that
scale between processor generations. With increased Internet
usage and growing desire for wireless communications, the
processor market is being driven to produce smaller and more
powerful chips that do not drain significant amounts of power.

SUMMARY OF THE INVENTION

The aforementioned problems are addressed by the present
invention. The concepts introduced are broad and present
chip-wide energy reduction optimization opportunities. The
particular embodiments described provide application adap-
tive and scalable solutions to energy-reduction in memory
systems.

A wide-range of compiler and microarchitectural tech-
niques are presented, that improve the energy efficiency of
processors significantly, without affecting performance (in
many cases performance can be improved). The scope of the
invention includes, but is not limited to, both embedded as
well as general-purpose processor designs.

In the methods described, energy consumption is reduced
by (1) extracting and exposing static information to control
processor resources at runtime, (2) exploiting speculative
static information in addition to predictable static informa-
tion, and (3) adding compiler managed static and static-dy-

20

25

30

35

40

45

50

55

60

65

2

namic execution paths (i.e., architectural components), that
can also be integrated into conventional mechanisms and that
leverage this static information.

Speculative compiler analysis, as an underlying compila-
tion approach, reduces the complexity of otherwise highly
sophisticated analysis techniques (e.g., flow-sensitive and
context-sensitive alias analysis), and expands their scope to
large and complex applications.

The methods presented are based on a combined compiler-
microarchitecture approach, and, more specifically, statically
speculative compilation and execution, and provide a unified
and scalable framework to reduce energy consumption adap-
tively, with minimal or no performance impact, or perfor-
mance improvement for many important applications (e.g.,
image compression and video processing).

The invention can be used to save energy on any type of
device that includes a processor. For example, the invention
can be used to save energy on personal computers, devices
containing embedded controllers, and hand-held devices,
such as PalmPilots and cellular telephones.

In general, in one aspect, the invention is a method, for use
with a compiler architecture framework, which includes per-
forming a statically speculative compilation process to
extract and use speculative static information, encoding the
speculative static information in an instruction set architec-
ture of a processor, and executing a compiled computer pro-
gram using the speculative static information. Executing sup-
ports static speculation driven mechanisms and controls. This
aspect may include one or more of the following features.

Executing may include controlling at least some processor
resources using the speculative static information encoded in
the instruction set architecture. Executing may include oper-
ating processor-related mechanisms using the speculative
static information encoded in the instruction set architecture.
Executing may include static, static-dynamic, and dynamic
execution paths. The speculative static information may
include information about one or more of processor resource
demands and information that contributes to determining pro-
cessor resource demands.

The instruction set architecture may include at least one of
modified and additional instructions to propagate information
through code and to store the information. The compilation
process may expose speculative static information to run time
layers, and the microarchitecture which performs the execut-
ing may provide a mechanism to recover in case of static
misprediction. The compilation process may extract the
speculative static information and performs compilation
using the speculative static information to reduce power con-
sumption in the processor. The speculative static information
may include predictable static information and additional
static information that is speculated based on the predictable
static information.

Executing may be performed by microarchitecture that
contains an extension. The extension may support correctness
of execution for performing the statically speculative compi-
lation process. The extension is comprised of hardware and/
or software.

The compilation process may perform static speculation.
The static speculation determines information about execu-
tion of the computer program. The static speculation may be
controlled on an application-specific and adaptive basis and
may be managed with compile-time flags. The compilation
process may determine processor performance and energy
tradeoffs during compile-time and may use the tradeofts dur-
ing execution. The compilation process may perform design
objective customization without changing the microarchitec-
ture.

US 9,235,393 B2

3

More information about processor resource usage is
exposed with speculative static compilation than with pre-
dictable static information. The microarchitecture may per-
form the executing using the speculative static information
and dynamic information during execution.

This aspect may be used in a silicon-based electronics
system, a nano-electronics based electronic system, or any
other appropriate system.

In general, in another aspect, the invention is directed to a
processor framework that includes a compiler which com-
piles a computer program, the compiler extracting specula-
tive static information about the computer program during
compilation, and a tagless cache architecture that is accessed
based on the extracted speculative static information. This
aspect may include one or more of the following.

The speculative static information may be used to register
promote cache pointer information. The speculative static
information may be used to select cache pointers at run time.
The processor framework may also include at least one of a
scratchpad-memory based cache mechanism and an associa-
tive cache.

The compiler may select which of plural cache accesses are
mapped to which cache mechanisms based on the speculative
static information. Frequently used data with a low memory
footprint may be mapped to the scratchpad-memory based
cache mechanism. Associativity and block size in the tagless
cache may be logical and programmable. The compiler may
determine block sizes and associativity of a cache based on an
analysis of the computer program.

The processor framework may include a memory area for
storing a cache pointer. The processor framework may
include a Cache TLB (Translation Look-ahead Buffer) for
capturing statically mispredicted cache pointers and other
types of cache pointers. The Cache TLB may include eight
entries. The processor framework may include a microarchi-
tecture for use in accessing the tagless cache. The microar-
chitecture may access the tagless cache using at least one of
static, static-dynamic, and dynamic cache access paths.

Unless otherwise defined, all technical and scientific terms
used herein have the same meaning as commonly understood
by one of ordinary skill in the art to which this invention
belongs. Although methods and materials similar or equiva-
lent to those described herein can be used in the practice or
testing of the present invention, suitable methods and mate-
rials are described below. In addition, the materials, methods,
and examples are illustrative only and not intended to be
limiting.

This brief summary has been provided so that the nature of
the invention may be understood quickly. A more complete
understanding of the invention can be obtained by reference
to the following detailed description of the preferred embodi-
ment thereof in connection with the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing a Tag-less (tagless)
Cache architecture, which is an example implementation of
the microarchitecture described in the first embodiment.

FIG. 2 is a block diagram of cache organizations with
address translation moved towards lower levels in the
memory hierarchy, STLB is the translation buffer between L1
and L2 caches, and MTLB is the translation buffer added
between L2 cache and main memory.

FIG. 3 is a block diagram of a baseline memory system,
where all accesses require address translation, multi-way
cache access, and tag-checks.

15

20

25

30

40

45

4

FIG. 4 is a block diagram showing an example of imple-
mentation of the microarchitecture in the 2" embodiment.

FIG. 5 is a flow diagram of an embodiment of the compi-
lation process.

FIG. 6 is a diagram for alternative pointer representations:
(a) program-point representation, (b) through global informa-
tion.

FIG. 7 is a diagram representing CFG and PTG graphs
derived for a simple C program.

FIG. 8 is a diagram representing a simple loop-based
example analyzed with traditional flow-sensitive AA (top)
and the SAA method (bottom), that shows that SAA achieves
higher precision by removing all weak point-to relations after
each merging-step, where the weak point-to relations are
shown with dotted arrows.

FIG. 9 is a diagram showing the accuracy of static specu-
lation for one set of parameters suing the industry standard
CPU2000 and Mediabench benchmarks.

FIG. 10 is a diagram showing chip-wide energy reduction
due to reduction in memory consumption obtained with the
microarchitecture in the second embodiment as compared to
an Alpha 21264 processor.

FIG. 11 is a list of programs evaluated with the embodi-
ments described herein.

DETAILED DESCRIPTION

The problem of energy reduction without performance
impact is addressed by the present invention. Power and
energy consumption are reduced by methods incorporated at
compile-time and at runtime, in both hardware and software
layers. The methods include compiler level, instruction set
architecture (ISA), and micro-architectural components/
techniques.

A compiler is software (i.e., machine executable instruc-
tions stored in a memory system) that translates applications
from high-level programming languages (e.g., C, C++, Java)
into machine specific sequences of instructions. The ISA is a
set of rules that defines the encoding of operations into
machine specific instructions. A program is a collection of
machine level instructions that are executed to perform the
desired functionality. Micro-architectural (or architectural)
components refer to hardware and/or software techniques
that are used during execution of the program. The actual
machine can be a microprocessor or any other device that is
capable of executing instructions that conform to the encod-
ing defined in the ISA. A memory area can be any area that
can store bits, e.g., registers, cache, and some type Random
Access Memory (RAM).

Compile-time refers to the time during which the program
is translated from a high level programming language into a
machine specific stream of instructions, and it is not part of
the execution or runtime. Runtime is the time it takes to
execute the translated machine instructions on the machine.
Machine energy in the targeted apparatus is only consumed
during runtime. Compilation is typically done on a different
host machine.

Information in the context of this invention refers to either
information collected during compilation or during execu-
tion. Information collected during compilation is called static
or compile time information. Information collected during
runtime is called runtime or dynamic information. Program
analysis refers to the process during compile time that ana-
lyzes the program and extracts static information. Program
transformation/optimization is the process during compile
time that modifies the program typically to achieve some
objective such as improve performance.

US 9,235,393 B2

5

Static information is defined to be predictable if it can be
shown during compilation that the information is true for any
possible input set applied to the program, or for any possible
execution of the program on the machine in question. Static
information is defined to be speculative if the information
extracted during compile time is not shown or cannot be
shown to be true for all possible execution instances. As such,
the available (i.e., extractable) speculative static information
is a superset of the available predictable static information in
a program.

An energy optimization is called dynamic if it uses
dynamic information. It is called static if it uses static infor-
mation.

The methods described herein address opportunities that
appear at the boundary between compile-time and runtime
layers in computer systems, in addition to techniques that can
be isolated to be part of either compile-time or runtime com-
ponents. The methods combine architecture and compiler
techniques into a compiler-enabled, tightly integrated, com-
piler-architecture based system design. The approach is
called compiler-enabled if the execution of specific instruc-
tions is managed to some extent by static information.

This has the benefit of that in addition to dynamic tech-
niques, static and static-dynamic energy reduction optimiza-
tions can be enabled. Additionally, the information exposed
to runtime layers can be made available much earlier in the
processor execution (pipeline), enabling energy reduction
without negatively impacting execution latencies.

In general, there are two main ways the methods presented
herein achieve energy reduction, without significantly affect-
ing performance (for several applications studied perfor-
mance has been improved): (1) redundancies in instruction
executions are either eliminated or reduced, and (2) execution
paths are simplified based on modified and/or new micro-
architectural components. In both (1) and (2) the methods are
leveraging various type of static information and/or dynamic
information about resources used and/or resources (likely)
needed, and/or information that can be used to estimate the
resources likely to be used.

The methods leverage static program information in smart
ways, and expose static resource utilization information for a
particular application, to runtime layers. The apparatus
extracts and leverages this information in a speculative man-
ner, in both compiler and architecture components, i.e., in the
new methods a superset of the predictable program informa-
tion can be used.

The methods implement compiler analysis and micro-ar-
chitectural techniques that enable the extraction and utiliza-
tion of speculative static information without affecting cor-
rectness of execution. The methods also enable various
degrees of static speculation (i.e., the extent to which infor-
mation extracted is expected to be true during execution), to
control the accuracy of static speculation.

Static speculation can be controlled on an application spe-
cific/adaptive basis and managed with compile-time flags.
This provides unique post-fabrication (compile-time) cus-
tomization of design objectives, as the type of information
extracted and leveraged can be used to control tradeoffs
between various design objectives such as power, perfor-
mance, and predictability, without requiring changes in the
architecture.

Additionally, the static speculation based approach is or
can be combined with dynamic techniques, in a solution that
leverages both statically predictable, statically speculative,
and dynamic information.

Rather than extracting only predictable information, that
would require a conservative compilation approach, the new

10

15

20

25

30

35

40

45

50

55

60

65

6

methods extract speculative static information. Such infor-
mation, that is likely to be true for the typical execution
instance, provides a larger scope for optimizations. The infor-
mation is leveraged speculatively and supported with micro-
architectural techniques to provide correctness of execution.

In addition to enabling extraction of more program infor-
mation, the methods also increase the flow of information
between compile-time and runtime layers/optimizations, by
exposing the speculative static information to runtime layers.

The methods encode statically extracted information about
predicted resource utilization into the Instruction Set Archi-
tecture (ISA), so that this information can be leveraged at
runtime. This approach enables a more energy-efficient
execution if used together with micro-architectural compo-
nents.

The methods can be used to reduce power and energy
consumption in both embedded and general-purpose sys-
tems. Furthermore, the methods are applicable to a wide-
range of computer systems, both state-of-the-art and emerg-
ing, which build on ISA interfaces between hardware and
compilation layers. The methods are independent from
device level technology, and can be used to reduce energy
consumption in both silicon based (e.g., CMOS) and emerg-
ing nano electronics based (e.g., carbon nano tubes, nano
wires, quantum dots) systems.

Memory Systems

The presented embodiment relates to the cache and
memory system mechanisms. Nevertheless, other embodi-
ments, on the same principles of statically speculative execu-
tion and compilation, can be constructed.

Background on Memory Systems

The cache is a fast memory hierarchy layer, typically
smaller in size than the physical address space. It is one of the
cornerstones of computer systems, used to hide the latency of
main memory accessing. This is especially important, due to
the increasing gap between execution speeds and memory
latency. While execution speeds are known to double every 18
months (Moore’s law), memory latencies are improving at a
much lower rate. With the increasing cache sizes, necessary to
hide memory latencies, the energy impact of cache accesses
becomes even more significant in future generation designs.

Every instruction is fetched from the memory hierarchy.
Approximately 20-25% of the program instructions are data
memory accesses that are fetched from a layer in the (data)
memory hierarchy. Hence, memory accessing (instructions
and data related) accounts for a large fraction of the total
processor energy.

As caches are typically smaller in size than the main physi-
cal memory, not all memory accesses may be cached (i.e.,
found in the cache) at a given time. Fast lookup and detection,
of whether a memory access is cached or not, in caches, is
provided through associative search mechanisms and match-
ing of tag information associated with data blocks.

Conventional caches consist of a tag memory and a data-
array. The data array is where the actual information is stored.
The tag memory is storing additional information related to
blocks of data (also called cache blocks or cache lines) in the
data-array. The tag information can be imagined as a label that
identifies a block of data in the cache. Every memory access
has this kind of label associated, as part ofits address. The tag
extracted from the address is compared with labels in the
tag-memory, during a memory access, to identify and validate
the location of a data block in the data-array.

If there is a tag that matches the current memory tag, then
the access results in a cache-hit and can be satisfied from the
cache data-array. If there is no tag in the tag-memory that
matches the current tag then the access is a cache-miss (at this

US 9,235,393 B2

7

level at least) and the memory access needs to be resolved
from the next layer in the memory hierarchy.

In associative caches multiple ways (i.e., alternative loca-
tions) are looked up in both tag memory and data-array.

Different systems have different organizations for memory
hierarchies. Some systems have only one layer of cache
before the main memory system, others have multiple layers,
each increasingly larger (and slower typically) but still much
faster than the main memory. Additionally, a memory system
can have additional roles as described next.

The broader memory system may include additional
mechanisms such as address translation, Translation Looka-
head Buffer (TLB), virtualization, protection, and various
layers and organizations of memory. Address translation is
the mechanism of mapping logical addresses into physical
addresses. Logical addresses are typically the addresses that
appear on the address pins of the processor, while the physical
addresses are those that are used on the actual memory chips.

Virtualization is the mechanism that enables a program
compiled to run on machines with different memory system
organizations. Protection is a mechanism that guarantees that
memory accesses are protected against writing into unautho-
rized memory areas.

Approach in Memory Systems

The main components in the methods to reduce energy
consumption in the memory system are: (1) compiler tech-
niques to extract/leverage static information about memory
accessing and data-flow, (2) tag-less and way-predictive com-
piler-enabled cache architecture based on speculative
memory accessing, (3) methodology to interface and inte-
grate the new methods into conventional memory hierarchies
and combine static and dynamic optimizations, and (4) ISA
extensions to expose memory accessing information.

The remaining structure of this description is as follows.
Next, two embodiments are introduced. First, the architecture
of the Tag-less compiler-enabled cache and related compiler
technology are presented. Then, a memory system that com-
bines statically managed memory accessing with conven-
tional memory accessing, a tagged statically speculative
cache, the ISA extension, and an embodiment of the compiler
technology are described.

EMBODIMENTS

Two implementation examples are presented, for the pur-
pose of illustrating possible applications of the statically
speculative execution and compilation methods in memory
systems.

The first embodiment is a Tag-loss cache that can be inte-
grated with other performance and energy reduction mecha-
nisms. This scheme is especially attractive in embedded pro-
cessors due to its low-cost, high-performance, low-power
consumption as well as adaptivity to different application
domains.

The second implementation is an embodiment in multi-
level memory hierarchies. It shows how the method of stati-
cally speculative execution and compilation can be integrated
in multi-level memory hierarchies. It provides the necessary
compilation and architecture techniques for such integration.
The methods are applicable, but not restricted to, both embed-
ded and general-purpose domains.

1°* Embodiment
Tag-Less Cache Architecture

This section describes an energy-efficient compiler-man-
aged caching architecture, that has no tag memory and uti-
lizes speculative static information. The architecture is shown
in FIG. 1.

10

15

20

25

30

35

40

45

50

55

60

65

8

Its main components are: Hotlines Register File 3, Cache
TLB (Translation Lookahead Buffer) 6, Hotlines Check 5,
SRAM Memory 18, Scratchpad Memory 19, and Software
(SW) Handler 15. The arrows represent signals or flow in
execution that are required for explanation: Virtual Line 1,
Hotline Index 2, Result of Cache TLB lookup 10, Cache TL.B
Miss signal 12, Hotline Register Hit/Miss result 5, Hotline
Miss 7, Hotline Hit 8, Address from cache TLB 9, Cache TLB
Hit 11, Software Handler Cache Hit 13, Address 16, Enable to
Scratchpad 17, Software Handler Detected Cache Miss 14,
Data output from SRAM 20, and Data output from scratchpad
21.

In this following explanation a design example where sca-
lar accesses are mapped to the scratchpad 17 and the non-
scalars to memory 18 is assumed. This however is not neces-
sary; another application of this architecture is to map all the
memory accesses to either the hotlines or the conventional
paths. Other memory accessing techniques could also be
combined with the ones described here.

The scratchpad access mechanism consumes very low
power due to its small size (a 1 Kbytes memory is used, but
this can be a banked memory where the actual use is appli-
cation specific controlled by the compiler). All accesses
directed to the scratchpad 17 are then output on 15, being
enabled by signal 12 decoded from the memory instruction.

The memory instructions that are using the hotline path
carry a hotline index 2 that has been determined at compile
time. This identifies the hotline register from register file 3,
predicted by the compiler to contain the address translation
for the current memory access. Using this index 2, the corre-
sponding hotline register is read from the hotline register file
3. A hotline register file is similar to a general purpose register
file, but contains register promoted cache pointers instead of
operands. In addition to the statically indexed mode, an asso-
ciative lookup can also be implemented to speed up access
during replacement.

The hotline register contains the virtual cache line address
to SRAM line address 16 mapping. If the memory reference
has the same virtual line address as that contained in the
hotline register during the Hotlines Check 5 (i.e., correctly
predicted speculative static information), there is a Hotline hit
8. Upon a correct static prediction, the SRAM can be accessed
through the SRAM address 16; this address is from the hotline
register that is combined with the offset part of the actual
address, and the memory access is satisfied. The offset is the
part of the address used to identify the word within a cache
line. If there is a static misprediction (i.e., the memory access
has been encoded at compile-time with an index that points at
runtime to a hotline register that does not contain the right
translation information) that causes a Hotline Miss 4, the
cache TLB 6 is checked for the translation information.

If the cache TLB 6 hits or signal 11 is set, the hotline
register file 3 is updated with the new translation, and the
memory access is satisfied from the SRAM memory 18. Data
is output on 20. A Cache TLB miss 12 invokes a compiler
generated software handler 15 to perform the address trans-
lation. This handler checks the tag-directory (which itself can
be stored in a non-mapped portion of the memory) to check if
it is a cache miss 14.

On a miss 14, a line is selected for replacement and the
required line is brought into its place—pretty much what
happens in a hardware cache, but handled by software here.
The cache TLB 6 and the hotline register 3 are updated with
the new translation, and the memory access is satisfied by
accessing the SRAM memory 18 and outputting the data on
20.

US 9,235,393 B2

9

Because the software handler 15 is accessed so seldom, its
overhead has minimal effect on the overall performance. This
cache can, in fact, even surpass a regular hardware cache in
terms of performance. For one, the interference between
memory accesses mapped to different paths has been elimi-
nated resulting in better hit-rate, and better cache utilization.

Secondly, a high associativity is basically emulated, with-
out the disadvantage of the added access latency in regular
associative caches, where higher associativity increases
cache access times. Since the SRAM access mechanism is
much less complicated than a regular tagged hardware cache,
there is a possibility of reduction in cycle time.

Additionally, both the hotline path (i.e., 2, 3, 5, 7) and the
scratchpad path (i.e., 17, 19, 21) will have a smaller hit
latency than in a conventional cache. This latency (in conven-
tional caches) would be even larger if runtime information is
used to predict way accesses. Furthermore, an optimal line
size can be chosen on a per application basis, as the line here
is not fixed but it is based on a compiler determined (logical)
mapping.

Access Mechanisms

This cache architecture combines four cache control tech-
niques: (1) fully static through 19, (2) statically speculative
through 2, 3, (3) hardware supported dynamic 6, and (4)
software supported dynamic through the software handler 15.
FIG. 1 shows this partitioning with the dotted line. To the left
the architectural mechanisms implement dynamic control, to
the right, static control.

The fully static cache management is based on disambigu-
ation between accesses with small memory footprints such as
the scalars and other memory accesses. Furthermore, fre-
quently accessed memory references that have a small foot-
print can be mapped into the scratchpad area. This architec-
ture can also be used without the scratchpad memory, by
having all memory accesses mapped either through the stati-
cally speculative techniques or some other path.

The second technique in this architecture is based on a
compile time speculative approach to eliminate tag-lookup
and multiple cache way access. In addition, some of the cache
logic found in associative caches can also be eliminated. The
idea is that if a large percentage of cache accesses can be
predicted statically, it is possible to eliminate the tag-array
and the cache logic found in associative caches, and thus
reduce power consumption.

The accesses that are directly mapped to the scratchpad
memory require no additional runtime overhead. The stati-
cally speculative accesses however, if managed explicitly in
the compiler, use virtual to SRAM address mappings or trans-
lations at runtime. This mapping is basically a translation of
virtual cache line block addresses into SRAM cache lines,
based on the line sizes assumed in the compiler.

Note that the partitioning of the SRAM into lines is only
logical, the SRAM is mainly accessed at the word level,
except for during fills associated with cache misses. Inserting
a sequence of compiler-generated instructions, at the expense
of'added software overhead, can do this translation. For many
applications there is a lot of reuse of these address mappings.
The compiler can speculatively register-promote the most
recent translations into a small new register area—the hotline
register file. With special memory instructions, or other type
of encoding of this information, the runtime overhead of
speculation checking can be completely eliminated. Never-
theless, in simple designs a software based check that can be
implemented in four regular instructions is also possible.

To avoid paying the penalty during a statically miss-pre-
dicted access, a small fully associative Cache TLB 6 is used to
cache address mappings for memory accesses that are miss-

20

30

40

45

10
predicted. A 16-entry Cache TLB 6 is enough to catch most of
the address translations that are not predicted correctly stati-
cally. Different application domains may work fine with a
smaller or require a slightly larger size for optimum energy
savings.

The fourth technique used in this architecture, is basically
a fully reconfigurable software cache 15. This technique is a
backup solution, and it can implement a highly associative
mapping. This implementation is for example based on a
four-way associative cache. The mapping table between vir-
tual cache lines 1 and physical SRAM lines 16 can be imple-
mented similar to an inverted page table or other schemes.
Experimental results show that the combined static and cache
TLB techniques often capture/predict correctly more than
99% of the memory accesses.

From a power perspective, this cache has substantial gains
compared to a conventional hardware cache for two reasons.
First, there are no tag-lookups on scalar accesses and cor-
rectly predicted non-scalar accesses. Second, the SRAM is
used as a simple addressable memory—the complicated
access mechanisms of a regular cache consume more power
and increase the memory access latency (e.g., the hit-latency).

274 Embodiment

Statically Speculative Memory Accessing in
Conventional Memory Systems

In general there are two main steps involved in a memory
access: (1) converting the program address to a cache address,
and (2) accessing the data from this address, if present in
cache (accessing the slower memory such as DRAM if not
present). Depending on the implementation, there can be
considerable power/performance redundancy associated with
both of these steps. This redundancy problem is described in
the next subsection, following with implementation embodi-
ments to tackle this problem. The invention is not limited to
these embodiments.

FIG. 3 shows the memory access process. The translation
function translates the larger program address 100 into a
cache block address shown as part of 110 (the lower order
block offset bits in 100 do not undergo any translation).

Depending on the caching scheme, this translation can be
very expensive, both energy-wise (for example, on a virtual
memory system with a 4-way cache, the virtual address 100
will be converted to physical address by the TLB 105, and all
the 4 tag and data arrays 112,113,114,115 would be looked up
in parallel), and performance-wise (if the cache is software
managed, doing the translation in software will consume
valuable CPU cycles). The translation information 109 in
case of a TLB hit 108 is added with the offset to form address
110 that is used to access the cache.

Where is the redundancy? Looking at a cache block level,
two program addresses with the same virtual block address
map to the same cache block. Therefore, the second transla-
tion is redundant. In general, if there is a group of memory
accesses mapping to the same cache block, repeating the
translation process on each access can be wasteful. Addition-
ally, if the cache way for the access is known, looking up all
the four ways (e.g., way 3 112, way 2 113, way 1 114) is not
necessary. Furthermore, the tag lookup 111 is wasteful if the
tag has been checked for an earlier access in the same cache
block.

The usual implementation maps all the accesses to the
same cache. This scheme may also be extravagant: many
applications often exhibit the behavior where a small set of
references are accessed very often—these can be accommo-

US 9,235,393 B2

11

dated in a small partition of the cache which consumes much
less power. Therefore, partitioning the cache and devising a
wiser translation function, which maps different accesses to
different cache partitions depending on their access pattern,
can amount to sizable energy savings.

The aforementioned redundancies are tackled using a
cooperative compiler-architecture approach. Specifically,
compiler analysis techniques that identify accesses likely to
map to the same cache line are developed. These accesses can
avoid repeated translation to save energy. The compiler in the
proposed method speculatively register promotes the transla-
tions for such groups of accesses.

These registers that contain address translation informa-
tion are provided as a form of architectural support. At runt-
ime, the architecture is responsible for veritying static specu-
lations: if correctly predicted by the compiler, the expensive
translation is eliminated. On mispredictions, the architecture
can update the registers with new information. Further, the
level of speculation in the compiler can be varied to better
match application behavior. Henceforth, the solution pro-
posed is referred to as the microarchitecture in 2”¢ embodi-
ment.

Conventional general-purpose microprocessors use a one-
size-fits-all access mechanism for all accesses. The subject
architecture in the 2 embodiment derives its energy savings
by providing different energy-efficient access paths that are
compiler-matched to different types of accesses. Next an
overview of the subject architecture in the 2" embodiment is
presented and followed with detailed discussions on the fea-
tures of this architecture.

Two different organizations of the architecture in the 2"¢
embodiment are shown. In both organizations a virtually-
indexed and virtually-tagged first level cache is used and
address translation is moved to lower levels in the memory
hierarchy. Other type of cache organizations are also possible.
As second level or L2 cache, both a physically-indexed and a
virtually-indexed cache are shown. Some of the design chal-
lenges in virtual-virtual organizations (e.g., the synonym
problem, integration in bus based multiprocessor systems,
and context-switching with large virtual .2 caches) could be
handled easier in virtual-physical designs. In both organiza-
tions, translation buffers are added. A translation buffer is a
cache for page level address translations and is used to avoid
the more expensive page table lookup in virtual memory
systems.

In the virtual-virtual (v-v) organization, a translation buffer
(MTLB) is added after the .2 cache and is accessed for every
L2 cache miss. This serves better the energy optimization
objectives than a TL.B-less design, where address translation
is implemented in software. Nevertheless, if increased flex-
ibility is desired, in the way paging is implemented in the
operating system, the TL.B-less design is a reasonable option
(experimental results prove this point). In the virtual-physical
organization (v-r), a translation buffer (STLB) is added after
the L1 cache and is accessed for every .1 cache miss or every
L2 cache access.

An overview of the different cache organizations with
address translation moved towards lower levels in the cache
hierarchy is shown in FIG. 2. As address translation consumes
a significant fraction of the energy consumed in the memory
system, both the v-v and v-r designs will save energy com-
pared to a physical-physical (r-r) cache hierarchy, where vir-
tual-to-physical address translation is done for every memory
access.

A context-switch between threads belonging to different
tasks may require change in virtual address mappings. To
avoid flushing the TLBs address-space identifiers to TLB

10

15

20

25

30

35

40

45

50

55

60

65

12

entries are added. Note that not having the address-space
identifiers not only would require flushing all the TLB entries,
but would also imply that the newly scheduled thread, once it
starts executing, will experience a number of TLB misses
until its working set is mapped.

FIG. 4 presents an overview of the subject architecture in
the 2" embodiment memory system, with integrated static
200 and dynamic 201 access paths. The subject architecture
in the 2nd embodiment extends associative cache lookup
mechanism 215, 216, 217, 218, with simpler, direct address-
ing modes 213, in a virtually tagged and indexed cache orga-
nization. This direct addressing mechanism 213 eliminates
the associative tag-checks (i.e., no tag-lookup as shown in
215,216, 217, 218 is required) and data-array accesses (i.e.,
only one of the data-arrays from 215, 216, 217, 218 is
accessed). The compiler-managed speculative direct address-
ing mechanism uses the hotline registers 208. Static mispre-
dictions are directed to the CAM based Tag-Cache 210, a
structure storing cache line addresses for the most recently
accessed cache lines. Tag-Cache hits also directly address the
cache, and the conventional associative lookup mechanism is
used only on Tag-Cache misses. Integration of protection-
checks along all cache access paths (208, 210 and conven-
tional) enables moving address translation to lower levels in
the memory hierarchy, as described earlier, or TLB-less
operation. In case of TLB-less designs, an [.2 cache miss
requires virtual-to-physical address translation for accessing
the main memory; a software virtual memory exception han-
dler can do the needful.

Support for Moving the TLB to Lower Levels in the Memory
Hierarchy or TLB-Less Operation

The subject architecture in the 2nd embodiment employs
virtually addressed caches, and integrates support for protec-
tion checks, otherwise performed by the TLB, along all
access mechanisms. That is, the subject architecture in the
2nd embodiment has embedded protection checks in the Hot-
line registers 208, the Tag-Cache 210, and cache tags (shown
as part of 215, 216, 217, 218). The subject architecture in the
2nd embodiment therefore could completely dispense with
the TLB.

L2 cache misses in the v-v organization require address
translation for the main memory access. The subject archi-
tecture in the 2nd embodiment uses translation buffer to speed
up this address translation, but a software VM exception
handler for doing the translation on [.2 cache misses and
fetching the data from the main memory can also be used.

The statically speculative, compiler managed memory
accessing can also be integrated in other type of memory
hierarchies.

Hotline Registers

The conventional associative lookup approach 4 parallel
tag-checks and data-array accesses (in a 4-way cache).
Depending on the matching tag, one of the 4 cache lines is
selected and the rest discarded. Now for sequences of
accesses mapping to the same cache line, the conventional
mechanism is highly redundant: the same cache line and tag
match on each access. The subject architecture in the 2nd
embodiment reduces this redundancy by identifying at com-
pile-time, accesses likely to lie in the same cache line, and
mapping them speculatively through one of the hotline reg-
isters 208.

The condition that the hotline path evaluates can be done
very efficiently without carry propagation. The hotline cache
access can also be started in parallel with the check, with the
consequence that in case of incorrect prediction some addi-
tional power is consumed in the data-array decoder. As a
result, the primary source of latency for hotline based

US 9,235,393 B2

13

accesses, 1s due to the data array access and the delay through
the sense amps. Note that conventional associative cache
designs use an additional multiplexer stage to select between
ways in a multi-way access (i.e., the correct block from the
ways 215, 216, 217, 218). Furthermore, as shown in previous
cache designs, the critical path is typically the tag-path; the
tag latency can be as much as 30% larger than the latency of
the data-array path in the conventional design.

Reduced feature sizes in next generation architectures will
further accentuate the latency increase of the tag path.
Because of this, in conventional cache designs, the way-
selection logic is moved towards the tag to rebalance the delay
differences between the tag and data-array paths. In the sub-
ject architecture in the 2nd embodiment the latency of the
data-array could be the main target for optimizations, as the
tag path is not on the critical path for most of the memory
accesses, by adequate bitline and wordline partitioning. Addi-
tionally, as physical cache designs would require the TLB
access completed to perform the tag comparison (the tag
access could be however done in parallel), this may also add
to the tag path latency. As such, the subject architecture in the
2nd embodiment based microprocessor could either have a
faster clock or at least a faster cache access for statically
predicted cache accesses.

The different hotline compiler techniques are described in
the next section. A simple run-time comparison 211 reveals if
the static prediction is correct. The cache is directly accessed
on correct predictions 213, and the hotline register 208
updated with the new information on mispredictions. A fully
associative lookup on the hotline registers to support invali-
dations is included.

As shown in FIG. 6, a hotline register 208 has 3 compo-
nents: (1) protection bits (ASID), which are used to enforce
address space protection, (2) TagIndex—two accesses are to
the same cache line if their Tag and Index components are the
same. The Taglndex component is compared with Tag and
Index of the actual access to check if the hotline register can
indeed be used to directly address the cache, (3) cache-way
information—this information enables direct access to one of
the ways in the set-associative cache.

Tag-Cache

Another energy-efficient cache access path in the subject
architecture in the 2nd embodiment is the Tag-Cache 210. It
is used both for static mispredictions (hotline misses 212) and
accesses not mapped through the hotline registers, i.e.,
dynamic accesses 201. Hence it serves the dual-role of
complementing the compiler-mapped static accesses by stor-
ing cache-line addresses recently replaced from the hotline
registers, and also saving cache energy for dynamic accesses;
the cache is directly accessed on Tag-Cache hits 211, 213.

A miss in the Tag-Cache 210 implies that associative
lookup mechanism is used with an additional cycle perfor-
mance overhead. The Tag-Cache is also updated with the new
information on misses, in for example LRU fashion. As seen
in FIG. 4, each Tag-Cache 210 entry is exactly the same as a
hotline register 208, and performs the same functions, but
dynamically.

Associative Lookup

The subject architecture in the 2nd embodiment uses an
associative cache lookup that is different from the conven-
tional lookup in that the protection information (ASID) is also
tagged to each cache line. Even the virtually addressed 1.2
cache is tagged with protection information in the v-v design
to enable TLB-less .2 access. This increases the area occu-
pied by the tag-arrays, and also its power consumption. Com-
pared to the overall cache area and energy consumption, this
increase is however negligible.

10

15

20

25

30

35

40

45

50

55

60

65

14

Instruction Set Architecture (ISA) Support

To access the memory through the hotline registers,
memory operations 200 that encode the hotline register index
should be provided. This index is filled in during compile
Lime based on the techniques described in the compiler sec-
tion. The implementation should perform a simple check 211
between the content of the hotline register identified and the
actual virtual block address, as shown in FIG. 4. Special
instructions, rather than modifications to existing can also be
provided for example. Alternatively, techniques requiring no
ISA modifications could also be used, as shown in the section.
The invention is not limited to type of encodings described
herein.

Approach Not Requiring ISA Support

Static information about the hotline registers 208 accessed
could be provided by generating code that writes this into
predetermined memory locations, e.g., into a stream-buffer.
This buffer can be used to add the index at runtime to memory
accesses in the critical path. For example, memory accesses
that are identified in critical loops could use the index infor-
mation from this buffer during the Instruction Decode stage to
access the hotline registers. The invention is not limited to
type of encodings described herein.

An Embodiment of the Compilation Process

FIG. 5 shows a high-level picture of the stages involved in
an embodiment for compilation. The implementation is using
the SUIF format. The invention is not limited to this format or
to the compilation embodiment presented.

The program sources are first converted to the intermediate
format 301 and high-level optimizations are performed 306.
Following that is the Alias Analysis stage, or equivalent, and
the Hotlines passes 302. Alias information enables the Hot-
line Analysis to more economically assign hotlines to refer-
ences (i.e., map cache pointers to registers). Without alias
analysis, the compiler would liberally assign each memory
reference a new hotline number. This will have a downgrad-
ing effect only if the number of references within inner loop
bodies is more than the number of hotlines, resulting in the
same hotlines being assigned to possibly spatially far apart
references. This would cause interference and result in lower
prediction rates. For many applications, the media bench-
marks tested in particular though, this is not so and the alias
analysis stage could be omitted with minimal effect on the
prediction rates. Code is generated based on the information
extracted in 303. Optimizations are performed on the high-
level representation 305 (e.g., based on expression trees) and
low-level representation 306 (e.g., flat instruction sequences).
Finally the generated code is run through an assembler 304
and results in a binary.

The Section “Hotlines With Speculative Alias analysis
shows a speculative data-flow analysis technique that further
improves on the precision the range of location sets is deter-
mined and extends its scope to large and complex applica-
tions. Additional passes include code generation 303 that
takes into consideration the results of the analysis above, and
then assembling the code 305 into a binary format.

Caches represent a large fraction of processor power con-
sumption. Given accesses, a speculative analysis to predict
which cache line is being accessed is used. Although it is
impossible do this with perfect accuracy, the methods
described herein provide an approach with good overall accu-
racy. Moreover, as pointed out above, it is not necessary for

US 9,235,393 B2

15

predictions to be perfect, rather, they should be right suffi-
ciently often that one can make beneficial use of them.

Almost all programs exhibit the behavior where certain
cache lines are “hot”, i.e., they are being used much more
frequently than others. If the compiler can register promote
the cache pointers for these hot cache lines, the lookup for the
many accesses mapping to these cache lines can be avoided,
i.e., the compiler can identify at cache lines that are heavily
used, and for all accesses going to these, map them through an
energy-efficient memory access mechanism.
Basic Hotlines Analysis

This process assigns each variable name a different hotline
register starting with the first register. When all the registers
have been used up, it wraps around back to the first register.
The following example illustrates this process:

for(i=0; 1< 100; i++) {
afil{1} =a[i+1]{1};
bli]{2} = 0;
*p+0){3} =1;

// numbers in curly braces
// are the hotline registers
// assigned by the process

The variables have been assigned three hotline registers.
For example, the hotlines process predicts that all the a[|
accesses for example, will map to the same cache line and
register promotes the cache pointer in register 1.

In particular, it the a[| is a word-sized array and the cache
line is 8 words wide, a[0] and a[7] could map to one cache
line, a[8] through a[15] to another, and so on.

Therefore, for this case, the process has seven correct pre-
dictions for every misprediction.

In general, this simple process works well with programs
with high spatial locality, like multimedia programs. Below,
enhancements to the basic approach are described.

Hotlines Combined with Alias Analysis

An accurate flow and context sensitive alias analysis can
reveal the location set that any pointer can be pointing to at
any given context in the program. Consider the following
example:

int a[100], b[100];

if(...)p=aelsep=b;
for(i = 0; 1 < 100; i++) {
afi] =0;
*(p++) = 1; // location_set(p) = {a, b}

The if-statement assigns either the array a or b to the
pointer p. This means that inside the loop, p could be access-
ing either array a or b.

A context- and flow-sensitive compiler would extract this
information: the location sets of pointers at various points in
the program. As mentioned earlier, this can help in a more
efficient hotline process: perform alias analysis and then dur-
ing the hotlines phase, utilize alias information to better
handle pointer-based accesses.

Perfect alias analysis is not typically possible for large and
complex applications, especially those using precompiled
libraries. Instead, a speculative alias analysis is developed as
part of the solution proposed. This is described in Section
“Hotlines with Speculative Alias Analysis”.

Enhancement with Type, Distance and Dependence Analysis

This process hotlines all accesses like the basic hotline
process, but is more refined. If an array a[| has been mapped

10

15

20

25

30

35

40

45

50

55

60

65

16

through register r1, it won’t necessarily be mapped through
register 1 again. Instead the process will try to calculate the
spatial distance of this access to the previous one. Only ifthey
are sufficiently close will they be mapped through the same
register.

The following example illustrates how the process works:

for (i = 0; i <100; i++) {
alil{1} = afi+1]{1} + a[i+100]{2} + afi+103]{2};
b[i]{3} =0; // number in curly braces is the hotline
p{4} =p—>next{4} // register assigned by the process

Suppose the array element-size is 4 bytes, the cache line is
64 bytes, and that two accesses are mapped to the same
register if they are within 32 bytes from each other.

The hotlines process first assigns a[i] hotline register rl.
When it comes to a[i+1], it checks the distance from currently
mapped accesses, and finds the closest one to be a[i] which is
4 bytes apart. Since this is within the threshold, a[i+1] is also
mapped through rl. For a[i+100], the closest access a[i+1] is
396 bytes apart, and hence a[i+100] is mapped through a
different hotline. The array accesses b[| is assigned register
r3 and so on.

In evaluating the distance between two accesses, the hot-
lines process uses control-flow, loop structure, dependence
and type information: field offsets in structures, array element
sizes, etc.

Support for Various Levels of Static Speculation

This process can be made to vary in its level of aggressive-
ness. A very aggressive version would carry out actions based
on predictions which do not necessarily have a high degree of
confidence. A conservative version may not do so, for
instance, it would not hotline non-affine array accesses of the
form a[b[i]] which are generally hard to predict. Different
versions of this process with different levels of aggressive-
ness can be constructed. The invention is not limited to one
particular implementation.

Hotlines with Speculative Alias Analysis

This analysis is part of the embodiment presented for the
compilation process. The objective of this analysis is to
extract precise information about memory access patterns in
pointer based accesses. The proposed technique is specula-
tive in the sense that the possible values for each pointer
access are determined and included based on their likelihood
of occurrence at runtime. Unlikely values are ignored and
highly likely values are added, even when the full proof
cannot be derived at compile-time.

One of the primary motivations for developing the specu-
lative alias analysis (SAA) process is because the more pre-
cise implementations of non-speculative alias analysis have
limitations when used for large programs or when special
constructs such as pointer based calls, recursion, or library
calls are found in the program. The less precise alias analysis
techniques, that are typically used in optimizing compilers,
have lower complexities but they are much less useful in the
context of extracting precise information about memory
access patterns. The experience with several state-of-the-art
research alias analysis packages shows that they don’t work
well for these programs. For example, none of'the SPEC2000
benchmarks could be analyzed with them. SAA based analy-
sis can not only be applied without restrictions and has lower
complexity, but also provides more precise information about
memory accesses.

US 9,235,393 B2

17

The information given by this analysis can be used in the
hotlines processes, e.g., to determine which cache pointer (or
hotline register) to assign to a given pointer based memory
access. Additionally, the same information can be used in
disambiguating pointer based loop-carried dependencies, to
estimate loop level parallelism in addition to ILP.

There are two ways to give pointer information: (1)
through program-point information, and (2) through global
information. FIG. 6 shows a simple C program and illustrates
the difference between these representations.

Program point information for example would show that at
the end of the program segment in FIG. 6, pointer p points to
{y,2}, a more precise information, compared with the global
information case where p points to {x,y,z}. Although global
information can be extracted with much more efficient analy-
sis process, it gives less precise results.

In general, alias analysis is done at either the intra-proce-
dural level or at the inter-procedural level. The latter consid-
ers analysis across call statements, attempts to handle recur-
sive, and pointer-based calls.

For intra-procedural analysis, a variety of processes with
different degrees of precision and efficiency have been devel-
oped. A more precise analysis results in narrower sets (i.e.,
fewer possible values for a pointer to take). Flow-sensitive
analysis takes control flow into account usually giving pro-
gram-point results. Flow-insensitive analysis views a pro-
gram as a set of statements that can be executed in any order
and gives per program or global results.

Flow-insensitive processes can be built on top of a type-
based analysis or constrained-based analysis. Because of the
higher precision of flow-sensitive approaches are of more
interest in these techniques. Flow-sensitive approaches are
typically based on traditional dataflow analysis, where
pointer information is represented with points-to graphs
(PTG). The speculative approach defined in the SAA process
could be applied to any type of alias analysis.

Nodes in a PTG correspond to program variables and edges
represent points-to relations. A points-to relation connects
two variables and means that a pointer variable can take the
value of another variable during execution. Intuitively, a
smaller number of points-to relations means better precision.

The main steps in a non-speculative flow-sensitive analysis
process are as follows: (1) build a control-flow graph (CFG)
of the computation, (2) analyze each basic block in the CFG
gradually building a PTG, (3) at the beginning of each basic
block merge information from previous basic blocks, (4)
repeat steps 2-3 until the PTG graph does not change. See for
example in FIG. 7, the CFG and the PTG for a simple C
application.

This analysis builds a PTG for the program in a conserva-
tive way, i.e., it guarantees that for each variable all the
possible points-to relations are captured. The SAA approach
removes some of these points-to relations when it predicts
them as seldom-occurring. A point-to relation is defined to be
a weak points-to relation if the edge is less likely to be lever-
aged during execution compared to other points-to relations
from the same pointer variable.

FIG. 8 exemplifies the flow-sensitive embodiment of the
SAA process in loops, for the simple case when point-to
relations are mapped to either weak or strong ones. One of the
process’s rules is that the incoming location sets are the weak
point-to relations, and are removed if there is any strong
point-to relation for the same access within the loop body. A
generalization of this process, for nested loops, is to consider
loop nests organized in pairs, with inner loop updates being
strong and incoming edges weak, and so on.

10

15

20

25

30

35

40

45

50

55

60

65

18

FIG. 8 shows that a great deal of precision has been
obtained by removing several edges in the PTG. For example,
both pointer p and q has been determined to point to only
variable ¢ after only three iterations in the process.

The complexity of the SAA process is reduced compared to
traditional alias analysis process. One possible implementa-
tion is by stopping the dataflow analysis after a certain num-
ber of iterations. Other implementations are also possible.
The main complexity in non-speculative alias analysis is
coming from dealing with loops, recursive calls, multi-
threaded analysis, and library calls in an inter-procedural
analysis. The analysis in the SAA process applies an approxi-
mate approach and stops the dataflow analysis before full
convergence is reached in such cases. Library calls that may
modify pointer values and for which source codes are not
available can also be speculatively estimated or ignored.

An example of implementation of the SAA process is as
follows: (1) build a control-flow graph (CFG) of the compu-
tation, (2) analyze each basic block in the CFG gradually
building a points-to graph (PTG), (3) at the beginning of each
basic block merge information from previous basic blocks,
(4) annotate weak and strong point-to relations focusing on
loops by looking at incoming point-to relations and point-to
relations in loop bodies, (5) speculatively estimate recursive
calls and library calls, (6) repeat steps 2-5 until the PTG graph
does not change or until a predetermined number of steps in
the analysis have been reached.

The methods described in this embodiment have been
implemented and carefully evaluated.

A small sampling of data giving a preview of the accuracy
of static speculation obtained with this implementation is
presented in FIG. 9. As shown, both memory accessing and
instructions executed per cycle could be predicted statically
with good accuracy. Better prediction translates into the pos-
sibility of saving more energy.

FIG. 10 shows the breakdown of processor-wide energy
savings obtained due to significantly reduced energy con-
sumed in the memory system. It shows that up to 75% of the
energy consumed in memory accessing can be saved. This
translates into up to 21% total energy reduction in an Alpha
21264 type of processor. A description of some the bench-
marks evaluated, but not limited to, is presented in FIG. 11.

The invention is not limited to, but can also be used to
improve performance in processors. Reduction of access
latencies in caches, for example, in the embodiments shown,
can improve memory accessing performance. Alternatively, it
can enable faster clock rates that would reduce execution
time, or would enable using larger caches that would improve
memory performance. Other performance benefits can result
from, but not limited to, more efficient execution.

Other embodiments not described herein are also within
the scope of the following claims.

What is claimed is:
1. A method, for use with a compiler architecture frame-
work, the method comprising:

performing a statically speculative compilation process on
a computer program to extract speculative static infor-
mation; and

encoding the speculative static information in an instruc-
tion set architecture of a processor in order to affect
power consumption of a processor resource during use
thereof, the speculatively static information identifying
an access path of the processor resource, the identified
path to be utilized at run time to reduce power consump-
tion of an individual use of the processor resource.

US 9,235,393 B2

19

2. The method of claim 1, further comprising controlling
the processor resource using the speculative static informa-
tion encoded in the instruction set architecture.

3. The method of claim 1, further comprising operating
processor-related mechanisms using the speculative static
information encoded in the instruction set architecture.

4. The method of claim 1, wherein the speculative static
information comprises at least one of information about pro-
cessor resource demands or information that contributes to
determining processor resource demands.

5. The method of claim 1, wherein the instruction set archi-
tecture comprises modified or additional instructions config-
ured to propagate information through code and to store infor-
mation.

6. The method of claim 1, wherein the statically speculative
compilation process exposes speculative static information to
run time layers; and

wherein a microarchitecture to perform execution at run

time provides a mechanism to recover from static
misprediction.

7. The method of claim 1, wherein the speculative static
information comprises a single command encoded in the
instruction set architecture, the single command for imple-
menting plural techniques to reduce processor power con-
sumption.

8. The method of claim 7, wherein the statically speculative
compilation process determines processor performance and
energy tradeoffs during compile-time.

9. The method of claim 1, wherein the speculative static
information comprises predictable static information and
additional static information that is speculated based on the
predictable static information.

10. The method of claim 1, wherein the statically specula-
tive compilation process performs static speculation, the
static speculation determining information about execution
of the compiled computer program, the static speculation
being controlled on application-specific and adaptive bases
and being managed with compile-time flags.

11. The method of claim 1, wherein more information
about processor resource usage is exposed with speculative
static compilation than with predictable static information.

12. A method, comprising:

accessing speculative static information encoded in an

instruction set architecture of a processor in order to
affect power consumption of a processor resource dur-
ing use thereof, the speculative static information gen-
erated prior to run time, the speculative static informa-
tion identifying an access path of the processor resource;
and

executing a compiled computer program in the processor

using the speculative static information encoded in the
instruction set architecture, wherein the executing com-
prises using the access path at run time to reduce
resource power consumption for an individual use of the
processor resource.

10

15

20

25

30

35

40

45

50

20

13. The method of claim 12, wherein the executing is
performed by microarchitecture that contains an extension,
the extension supporting correctness of execution for per-
forming the statically speculative compilation process.

14. The method of claim 13, wherein the extension is
comprised of at least one of hardware or software.

15. An apparatus, comprising:

a tagless cache system that is accessible at run time based
on speculative static information about a computer pro-
gram, the speculative static information extracted from
the computer program prior to runtime; and

a microarchitecture to access the tagless cache system at
run time, the microarchitecture configured to utilize the
speculative static information to predict access paths for
cache accesses at run time, wherein individual cache
accesses predicted using the speculative static informa-
tion contribute to reduction in cache power and process-
ing device energy consumption.

16. The apparatus of claim 15, wherein the speculative
static information is used to register promote cache pointer
information to predict cache accesses.

17. The apparatus of claim 15, wherein the speculative
static information is used to select cache pointers at run time
to predict cache accesses.

18. The apparatus of claim 15, further comprising a
scratchpad-memory based cache mechanism;

wherein frequently used data with a low memory footprint
is mapped to the scratchpad-memory based cache
mechanism.

19. The apparatus of claim 18, wherein associativity and
block size in the tagless cache system are logical and pro-
grammable.

20. The apparatus of claim 18, further comprising a Cache
TLB (Translation Look-ahead Buffer) for capturing statically
mispredicted cache pointers and other types of cache point-
ers.

21. The apparatus of claim 15, wherein individual cache
accesses predicted using the speculative static information
contribute to reduction in cache power and processor energy
consumption.

22. An apparatus, comprising:

means for recovering speculative static information
encoded in an instruction set architecture of a processor
in order to affect power consumption of a processor
resource during use thereof, the speculative static infor-
mation generated prior to run time, the speculative static
information identifying an access path of the processor
resource; and

means for utilizing the identified path at run time to reduce
power consumption of an individual use of the processor
resource at a time of execution of a compiled computer
program corresponding to the speculative static infor-
mation encoded in the instruction set architecture.

#* #* #* #* #*

